Cargando…
Identification of Road-Surface Type Using Deep Neural Networks for Friction Coefficient Estimation
Nowadays, vehicles have advanced driver-assistance systems which help to improve vehicle safety and save the lives of drivers, passengers and pedestrians. Identification of the road-surface type and condition in real time using a video image sensor, can increase the effectiveness of such systems sig...
Autores principales: | Šabanovič, Eldar, Žuraulis, Vidas, Prentkovskis, Olegas, Skrickij, Viktor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037890/ https://www.ncbi.nlm.nih.gov/pubmed/31979141 http://dx.doi.org/10.3390/s20030612 |
Ejemplares similares
-
Feasibility of a Neural Network-Based Virtual Sensor for Vehicle Unsprung Mass Relative Velocity Estimation
por: Šabanovič, Eldar, et al.
Publicado: (2021) -
Investigation of the Rupture Surface of the Titanium Alloy Using Convolutional Neural Networks
por: Konovalenko, Ihor, et al.
Publicado: (2018) -
A hierarchical estimator development for estimation of tire-road friction coefficient
por: Zhang, Xudong, et al.
Publicado: (2017) -
A Road Safety-Based Selection Methodology for Professional Drivers: Behaviour and Accident Rate Analysis
por: Zaranka, Jurijus, et al.
Publicado: (2021) -
Visual Measurement System for Wheel–Rail Lateral Position Evaluation
por: Skrickij, Viktor, et al.
Publicado: (2021)