Cargando…
Ion Channels in The Pathogenesis of Endometriosis: A Cutting-Edge Point of View
Background: Ion channels play a crucial role in many physiological processes. Several subtypes are expressed in the endometrium. Endometriosis is strictly correlated to estrogens and it is evident that expression and functionality of different ion channels are estrogen-dependent, fluctuating between...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037987/ https://www.ncbi.nlm.nih.gov/pubmed/32046116 http://dx.doi.org/10.3390/ijms21031114 |
_version_ | 1783500550107561984 |
---|---|
author | Riemma, Gaetano Laganà, Antonio Simone Schiattarella, Antonio Garzon, Simone Cobellis, Luigi Autiero, Raffaele Licciardi, Federico Della Corte, Luigi La Verde, Marco De Franciscis, Pasquale |
author_facet | Riemma, Gaetano Laganà, Antonio Simone Schiattarella, Antonio Garzon, Simone Cobellis, Luigi Autiero, Raffaele Licciardi, Federico Della Corte, Luigi La Verde, Marco De Franciscis, Pasquale |
author_sort | Riemma, Gaetano |
collection | PubMed |
description | Background: Ion channels play a crucial role in many physiological processes. Several subtypes are expressed in the endometrium. Endometriosis is strictly correlated to estrogens and it is evident that expression and functionality of different ion channels are estrogen-dependent, fluctuating between the menstrual phases. However, their relationship with endometriosis is still unclear. Objective: To summarize the available literature data about the role of ion channels in the etiopathogenesis of endometriosis. Methods: A search on PubMed and Medline databases was performed from inception to November 2019. Results: Cystic fibrosis transmembrane conductance regulator (CFTR), transient receptor potentials (TRPs), aquaporins (AQPs), and chloride channel (ClC)-3 expression and activity were analyzed. CFTR expression changed during the menstrual phases and was enhanced in endometriosis samples; its overexpression promoted endometrial cell proliferation, migration, and invasion throughout nuclear factor kappa-light-chain-enhancer of activated B cells-urokinase plasminogen activator receptor (NFκB-uPAR) signaling pathway. No connection between TRPs and the pathogenesis of endometriosis was found. AQP5 activity was estrogen-increased and, through phosphatidylinositol-3-kinase and protein kinase B (PI3K/AKT), helped in vivo implantation of ectopic endometrium. In vitro, AQP9 participated in extracellular signal-regulated kinases/p38 mitogen-activated protein kinase (ERK/p38 MAPK) pathway and helped migration and invasion stimulating matrix metalloproteinase (MMP)2 and MMP9. ClC-3 was also overexpressed in ectopic endometrium and upregulated MMP9. Conclusion: Available evidence suggests a pivotal role of CFTR, AQPs, and ClC-3 in endometriosis etiopathogenesis. However, data obtained are not sufficient to establish a direct role of ion channels in the etiology of the disease. Further studies are needed to clarify this relationship. |
format | Online Article Text |
id | pubmed-7037987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70379872020-03-10 Ion Channels in The Pathogenesis of Endometriosis: A Cutting-Edge Point of View Riemma, Gaetano Laganà, Antonio Simone Schiattarella, Antonio Garzon, Simone Cobellis, Luigi Autiero, Raffaele Licciardi, Federico Della Corte, Luigi La Verde, Marco De Franciscis, Pasquale Int J Mol Sci Review Background: Ion channels play a crucial role in many physiological processes. Several subtypes are expressed in the endometrium. Endometriosis is strictly correlated to estrogens and it is evident that expression and functionality of different ion channels are estrogen-dependent, fluctuating between the menstrual phases. However, their relationship with endometriosis is still unclear. Objective: To summarize the available literature data about the role of ion channels in the etiopathogenesis of endometriosis. Methods: A search on PubMed and Medline databases was performed from inception to November 2019. Results: Cystic fibrosis transmembrane conductance regulator (CFTR), transient receptor potentials (TRPs), aquaporins (AQPs), and chloride channel (ClC)-3 expression and activity were analyzed. CFTR expression changed during the menstrual phases and was enhanced in endometriosis samples; its overexpression promoted endometrial cell proliferation, migration, and invasion throughout nuclear factor kappa-light-chain-enhancer of activated B cells-urokinase plasminogen activator receptor (NFκB-uPAR) signaling pathway. No connection between TRPs and the pathogenesis of endometriosis was found. AQP5 activity was estrogen-increased and, through phosphatidylinositol-3-kinase and protein kinase B (PI3K/AKT), helped in vivo implantation of ectopic endometrium. In vitro, AQP9 participated in extracellular signal-regulated kinases/p38 mitogen-activated protein kinase (ERK/p38 MAPK) pathway and helped migration and invasion stimulating matrix metalloproteinase (MMP)2 and MMP9. ClC-3 was also overexpressed in ectopic endometrium and upregulated MMP9. Conclusion: Available evidence suggests a pivotal role of CFTR, AQPs, and ClC-3 in endometriosis etiopathogenesis. However, data obtained are not sufficient to establish a direct role of ion channels in the etiology of the disease. Further studies are needed to clarify this relationship. MDPI 2020-02-07 /pmc/articles/PMC7037987/ /pubmed/32046116 http://dx.doi.org/10.3390/ijms21031114 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Riemma, Gaetano Laganà, Antonio Simone Schiattarella, Antonio Garzon, Simone Cobellis, Luigi Autiero, Raffaele Licciardi, Federico Della Corte, Luigi La Verde, Marco De Franciscis, Pasquale Ion Channels in The Pathogenesis of Endometriosis: A Cutting-Edge Point of View |
title | Ion Channels in The Pathogenesis of Endometriosis: A Cutting-Edge Point of View |
title_full | Ion Channels in The Pathogenesis of Endometriosis: A Cutting-Edge Point of View |
title_fullStr | Ion Channels in The Pathogenesis of Endometriosis: A Cutting-Edge Point of View |
title_full_unstemmed | Ion Channels in The Pathogenesis of Endometriosis: A Cutting-Edge Point of View |
title_short | Ion Channels in The Pathogenesis of Endometriosis: A Cutting-Edge Point of View |
title_sort | ion channels in the pathogenesis of endometriosis: a cutting-edge point of view |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037987/ https://www.ncbi.nlm.nih.gov/pubmed/32046116 http://dx.doi.org/10.3390/ijms21031114 |
work_keys_str_mv | AT riemmagaetano ionchannelsinthepathogenesisofendometriosisacuttingedgepointofview AT laganaantoniosimone ionchannelsinthepathogenesisofendometriosisacuttingedgepointofview AT schiattarellaantonio ionchannelsinthepathogenesisofendometriosisacuttingedgepointofview AT garzonsimone ionchannelsinthepathogenesisofendometriosisacuttingedgepointofview AT cobellisluigi ionchannelsinthepathogenesisofendometriosisacuttingedgepointofview AT autieroraffaele ionchannelsinthepathogenesisofendometriosisacuttingedgepointofview AT licciardifederico ionchannelsinthepathogenesisofendometriosisacuttingedgepointofview AT dellacorteluigi ionchannelsinthepathogenesisofendometriosisacuttingedgepointofview AT laverdemarco ionchannelsinthepathogenesisofendometriosisacuttingedgepointofview AT defranciscispasquale ionchannelsinthepathogenesisofendometriosisacuttingedgepointofview |