Cargando…

Exploration of Binding Mechanism of a Potential Streptococcus pneumoniae Neuraminidase Inhibitor from Herbaceous Plants by Molecular Simulation

Streptococcus pneumoniae can cause diseases such as pneumonia. Broad-spectrum antibiotic therapy for Streptococcus pneumoniae is increasingly limited due to the emergence of drug-resistant strains. The development of novel drugs is still currently of focus. Abundant polyphenols have been demonstrate...

Descripción completa

Detalles Bibliográficos
Autores principales: Guan, Shanshan, Zhu, Ketong, Dong, Yanjiao, Li, Hao, Yang, Shuang, Wang, Song, Shan, Yaming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038148/
https://www.ncbi.nlm.nih.gov/pubmed/32028720
http://dx.doi.org/10.3390/ijms21031003
Descripción
Sumario:Streptococcus pneumoniae can cause diseases such as pneumonia. Broad-spectrum antibiotic therapy for Streptococcus pneumoniae is increasingly limited due to the emergence of drug-resistant strains. The development of novel drugs is still currently of focus. Abundant polyphenols have been demonstrated to have antivirus and antibacterial ability. Chlorogenic acid is one of the representatives that has been proven to have the potential to inhibit both the influenza virus and Streptococcus pneumoniae. However, for such a potential neuraminidase inhibitor, the interaction mechanism studies between chlorogenic acid and Streptococcus pneumoniae neuraminidase are rare. In the current study, the binding mechanism of chlorogenic acid and Streptococcus pneumoniae neuraminidase were investigated by molecular simulation. The results indicated that chlorogenic acid might establish the interaction with Streptococcus pneumoniae neuraminidase via hydrogen bonds, salt bridge, and cation-π. The vital residues involved Arg347, Ile348, Lys440, Asp372, Asp417, and Glu768. The side chain of Arg347 might form a cap-like structure to lock the chlorogenic acid to the active site. The results from binding energy calculation indicated that chlorogenic acid had strong binding potential with neuraminidase. The results predicted a detailed binding mechanism of a potential Streptococcus pneumoniae neuraminidase inhibitor, which will be provide a theoretical basis for the mechanism of new inhibitors.