Cargando…
3D Hermite Transform Optical Flow Estimation in Left Ventricle CT Sequences
Heart diseases are the most important causes of death in the world and over the years, the study of cardiac movement has been carried out mainly in two dimensions, however, it is important to consider that the deformations due to the movement of the heart occur in a three-dimensional space. The [For...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038175/ https://www.ncbi.nlm.nih.gov/pubmed/31973153 http://dx.doi.org/10.3390/s20030595 |
_version_ | 1783500593229201408 |
---|---|
author | Mira, Carlos Moya-Albor, Ernesto Escalante-Ramírez, Boris Olveres, Jimena Brieva, Jorge Vallejo, Enrique |
author_facet | Mira, Carlos Moya-Albor, Ernesto Escalante-Ramírez, Boris Olveres, Jimena Brieva, Jorge Vallejo, Enrique |
author_sort | Mira, Carlos |
collection | PubMed |
description | Heart diseases are the most important causes of death in the world and over the years, the study of cardiac movement has been carried out mainly in two dimensions, however, it is important to consider that the deformations due to the movement of the heart occur in a three-dimensional space. The [Formula: see text] analysis allows to describe most of the motions of the heart, for example, the twisting motion that takes place on every beat cycle that allows us identifying abnormalities of the heart walls. Therefore, it is necessary to develop algorithms that help specialists understand the cardiac movement. In this work, we developed a new approach to determine the cardiac movement in three dimensions using a differential optical flow approach in which we use the steered Hermite transform (SHT) which allows us to decompose cardiac volumes taking advantage of it as a model of the human vision system (HVS). Our proposal was tested in complete cardiac computed tomography (CT) volumes ( [Formula: see text]), as well as its respective left ventricular segmentation. The robustness to noise was tested with good results. The evaluation of the results was carried out through errors in forwarding reconstruction, from the volume at time t to time [Formula: see text] using the optical flow obtained (interpolation errors). The parameters were tuned extensively. In the case of the 2D algorithm, the interpolation errors and normalized interpolation errors are very close and below the values reported in ground truth flows. In the case of the 3D algorithm, the results were compared with another similar method in 3D and the interpolation errors remained below 0.1. These results of interpolation errors for complete cardiac volumes and the left ventricle are shown graphically for clarity. Finally, a series of graphs are observed where the characteristic of contraction and dilation of the left ventricle is evident through the representation of the 3D optical flow. |
format | Online Article Text |
id | pubmed-7038175 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70381752020-03-10 3D Hermite Transform Optical Flow Estimation in Left Ventricle CT Sequences Mira, Carlos Moya-Albor, Ernesto Escalante-Ramírez, Boris Olveres, Jimena Brieva, Jorge Vallejo, Enrique Sensors (Basel) Article Heart diseases are the most important causes of death in the world and over the years, the study of cardiac movement has been carried out mainly in two dimensions, however, it is important to consider that the deformations due to the movement of the heart occur in a three-dimensional space. The [Formula: see text] analysis allows to describe most of the motions of the heart, for example, the twisting motion that takes place on every beat cycle that allows us identifying abnormalities of the heart walls. Therefore, it is necessary to develop algorithms that help specialists understand the cardiac movement. In this work, we developed a new approach to determine the cardiac movement in three dimensions using a differential optical flow approach in which we use the steered Hermite transform (SHT) which allows us to decompose cardiac volumes taking advantage of it as a model of the human vision system (HVS). Our proposal was tested in complete cardiac computed tomography (CT) volumes ( [Formula: see text]), as well as its respective left ventricular segmentation. The robustness to noise was tested with good results. The evaluation of the results was carried out through errors in forwarding reconstruction, from the volume at time t to time [Formula: see text] using the optical flow obtained (interpolation errors). The parameters were tuned extensively. In the case of the 2D algorithm, the interpolation errors and normalized interpolation errors are very close and below the values reported in ground truth flows. In the case of the 3D algorithm, the results were compared with another similar method in 3D and the interpolation errors remained below 0.1. These results of interpolation errors for complete cardiac volumes and the left ventricle are shown graphically for clarity. Finally, a series of graphs are observed where the characteristic of contraction and dilation of the left ventricle is evident through the representation of the 3D optical flow. MDPI 2020-01-21 /pmc/articles/PMC7038175/ /pubmed/31973153 http://dx.doi.org/10.3390/s20030595 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mira, Carlos Moya-Albor, Ernesto Escalante-Ramírez, Boris Olveres, Jimena Brieva, Jorge Vallejo, Enrique 3D Hermite Transform Optical Flow Estimation in Left Ventricle CT Sequences |
title | 3D Hermite Transform Optical Flow Estimation in Left Ventricle CT Sequences |
title_full | 3D Hermite Transform Optical Flow Estimation in Left Ventricle CT Sequences |
title_fullStr | 3D Hermite Transform Optical Flow Estimation in Left Ventricle CT Sequences |
title_full_unstemmed | 3D Hermite Transform Optical Flow Estimation in Left Ventricle CT Sequences |
title_short | 3D Hermite Transform Optical Flow Estimation in Left Ventricle CT Sequences |
title_sort | 3d hermite transform optical flow estimation in left ventricle ct sequences |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038175/ https://www.ncbi.nlm.nih.gov/pubmed/31973153 http://dx.doi.org/10.3390/s20030595 |
work_keys_str_mv | AT miracarlos 3dhermitetransformopticalflowestimationinleftventriclectsequences AT moyaalborernesto 3dhermitetransformopticalflowestimationinleftventriclectsequences AT escalanteramirezboris 3dhermitetransformopticalflowestimationinleftventriclectsequences AT olveresjimena 3dhermitetransformopticalflowestimationinleftventriclectsequences AT brievajorge 3dhermitetransformopticalflowestimationinleftventriclectsequences AT vallejoenrique 3dhermitetransformopticalflowestimationinleftventriclectsequences |