Cargando…
A Recognition Method for Rice Plant Diseases and Pests Video Detection Based on Deep Convolutional Neural Network
Increasing grain production is essential to those areas where food is scarce. Increasing grain production by controlling crop diseases and pests in time should be effective. To construct video detection system for plant diseases and pests, and to build a real-time crop diseases and pests video detec...
Autores principales: | Li, Dengshan, Wang, Rujing, Xie, Chengjun, Liu, Liu, Zhang, Jie, Li, Rui, Wang, Fangyuan, Zhou, Man, Liu, Wancai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038217/ https://www.ncbi.nlm.nih.gov/pubmed/31973039 http://dx.doi.org/10.3390/s20030578 |
Ejemplares similares
-
Visual Feature Learning on Video Object and Human Action Detection: A Systematic Review
por: Li, Dengshan, et al.
Publicado: (2021) -
AgriPest: A Large-Scale Domain-Specific Benchmark Dataset for Practical Agricultural Pest Detection in the Wild
por: Wang, Rujing, et al.
Publicado: (2021) -
WSRD-Net: A Convolutional Neural Network-Based Arbitrary-Oriented Wheat Stripe Rust Detection Method
por: Liu, Haiyun, et al.
Publicado: (2022) -
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022) -
Rice Blast Disease Recognition Using a Deep Convolutional Neural Network
por: Liang, Wan-jie, et al.
Publicado: (2019)