Cargando…
Multiple Object Tracking for Dense Pedestrians by Markov Random Field Model with Improvement on Potentials
Pedestrian tracking in dense crowds is a challenging task, even when using a multi-camera system. In this paper, a new Markov random field (MRF) model is proposed for the association of tracklet couplings. Equipped with a new potential function improvement method, this model can associate the small...
Autores principales: | Liu, Peixin, Li, Xiaofeng, Wang, Yang, Fu, Zhizhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038340/ https://www.ncbi.nlm.nih.gov/pubmed/31979193 http://dx.doi.org/10.3390/s20030628 |
Ejemplares similares
-
Pedestrian multiple-object tracking based on FairMOT and circle loss
por: Che, Jin, et al.
Publicado: (2023) -
Multi-Object Pedestrian Tracking Using Improved YOLOv8 and OC-SORT
por: Xiao, Xin, et al.
Publicado: (2023) -
Improving Multiple Pedestrian Tracking in Crowded Scenes with Hierarchical Association
por: Xiao, Changcheng, et al.
Publicado: (2023) -
Multiple-Joint Pedestrian Tracking Using Periodic Models
por: Dolatabadi, Marzieh, et al.
Publicado: (2020) -
Markov random fields
por: Rozanov, Yu A
Publicado: (1982)