Cargando…
Lane Departure Warning Mechanism of Limited False Alarm Rate Using Extreme Learning Residual Network and ϵ-Greedy LSTM
Neglecting the driver behavioral model in lane-departure-warning systems has taken over as the primary reason for false warnings in human–machine interfaces. We propose a machine learning-based mechanism to identify drivers’ unintended lane-departure behaviors, and simultaneously predict the possibi...
Autores principales: | Gao, Qiaoming, Yin, Huijun, Zhang, Weiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038345/ https://www.ncbi.nlm.nih.gov/pubmed/31979330 http://dx.doi.org/10.3390/s20030644 |
Ejemplares similares
-
Vision-based lane departure warning framework
por: Em, Poh Ping, et al.
Publicado: (2019) -
Robust Lane Sensing and Departure Warning under Shadows and Occlusions
por: Tapia-Espinoza, Rodolfo, et al.
Publicado: (2013) -
Tactile stimulations and wheel rotation responses: toward augmented lane departure warning systems
por: Tandonnet, Christophe, et al.
Publicado: (2014) -
Lane Departure Assessment via Enhanced Single Lane-Marking
por: Luo, Yiwei, et al.
Publicado: (2022) -
Stationary gaze entropy predicts lane departure events in sleep-deprived drivers
por: Shiferaw, Brook A., et al.
Publicado: (2018)