Cargando…

In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection

In this study, we investigate the performance of two piezoresistive micro-electro-mechanical system (MEMS)-based silicon cantilever sensors for measuring target analytes (i.e., ultrafine particulate matters). We use two different types of cantilevers with geometric dimensions of 1000 × 170 × 19.5 µm...

Descripción completa

Detalles Bibliográficos
Autores principales: Setiono, Andi, Bertke, Maik, Nyang’au, Wilson Ombati, Xu, Jiushuai, Fahrbach, Michael, Kirsch, Ina, Uhde, Erik, Deutschinger, Alexander, Fantner, Ernest J., Schwalb, Christian H., Wasisto, Hutomo Suryo, Peiner, Erwin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038349/
https://www.ncbi.nlm.nih.gov/pubmed/31979161
http://dx.doi.org/10.3390/s20030618
_version_ 1783500619831574528
author Setiono, Andi
Bertke, Maik
Nyang’au, Wilson Ombati
Xu, Jiushuai
Fahrbach, Michael
Kirsch, Ina
Uhde, Erik
Deutschinger, Alexander
Fantner, Ernest J.
Schwalb, Christian H.
Wasisto, Hutomo Suryo
Peiner, Erwin
author_facet Setiono, Andi
Bertke, Maik
Nyang’au, Wilson Ombati
Xu, Jiushuai
Fahrbach, Michael
Kirsch, Ina
Uhde, Erik
Deutschinger, Alexander
Fantner, Ernest J.
Schwalb, Christian H.
Wasisto, Hutomo Suryo
Peiner, Erwin
author_sort Setiono, Andi
collection PubMed
description In this study, we investigate the performance of two piezoresistive micro-electro-mechanical system (MEMS)-based silicon cantilever sensors for measuring target analytes (i.e., ultrafine particulate matters). We use two different types of cantilevers with geometric dimensions of 1000 × 170 × 19.5 µm(3) and 300 × 100 × 4 µm(3), which refer to the 1st and 2nd types of cantilevers, respectively. For the first case, the cantilever is configured to detect the fundamental in-plane bending mode and is actuated using a resistive heater. Similarly, the second type of cantilever sensor is actuated using a meandering resistive heater (bimorph) and is designed for out-of-plane operation. We have successfully employed these two cantilevers to measure and monitor the changes of mass concentration of carbon nanoparticles in air, provided by atomizing suspensions of these nanoparticles into a sealed chamber, ranging from 0 to several tens of µg/m(3) and oversize distributions from ~10 nm to ~350 nm. Here, we deploy both types of cantilever sensors and operate them simultaneously with a standard laboratory system (Fast Mobility Particle Sizer, FMPS, TSI 3091) as a reference.
format Online
Article
Text
id pubmed-7038349
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70383492020-03-09 In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection Setiono, Andi Bertke, Maik Nyang’au, Wilson Ombati Xu, Jiushuai Fahrbach, Michael Kirsch, Ina Uhde, Erik Deutschinger, Alexander Fantner, Ernest J. Schwalb, Christian H. Wasisto, Hutomo Suryo Peiner, Erwin Sensors (Basel) Article In this study, we investigate the performance of two piezoresistive micro-electro-mechanical system (MEMS)-based silicon cantilever sensors for measuring target analytes (i.e., ultrafine particulate matters). We use two different types of cantilevers with geometric dimensions of 1000 × 170 × 19.5 µm(3) and 300 × 100 × 4 µm(3), which refer to the 1st and 2nd types of cantilevers, respectively. For the first case, the cantilever is configured to detect the fundamental in-plane bending mode and is actuated using a resistive heater. Similarly, the second type of cantilever sensor is actuated using a meandering resistive heater (bimorph) and is designed for out-of-plane operation. We have successfully employed these two cantilevers to measure and monitor the changes of mass concentration of carbon nanoparticles in air, provided by atomizing suspensions of these nanoparticles into a sealed chamber, ranging from 0 to several tens of µg/m(3) and oversize distributions from ~10 nm to ~350 nm. Here, we deploy both types of cantilever sensors and operate them simultaneously with a standard laboratory system (Fast Mobility Particle Sizer, FMPS, TSI 3091) as a reference. MDPI 2020-01-22 /pmc/articles/PMC7038349/ /pubmed/31979161 http://dx.doi.org/10.3390/s20030618 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Setiono, Andi
Bertke, Maik
Nyang’au, Wilson Ombati
Xu, Jiushuai
Fahrbach, Michael
Kirsch, Ina
Uhde, Erik
Deutschinger, Alexander
Fantner, Ernest J.
Schwalb, Christian H.
Wasisto, Hutomo Suryo
Peiner, Erwin
In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection
title In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection
title_full In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection
title_fullStr In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection
title_full_unstemmed In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection
title_short In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection
title_sort in-plane and out-of-plane mems piezoresistive cantilever sensors for nanoparticle mass detection
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038349/
https://www.ncbi.nlm.nih.gov/pubmed/31979161
http://dx.doi.org/10.3390/s20030618
work_keys_str_mv AT setionoandi inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection
AT bertkemaik inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection
AT nyangauwilsonombati inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection
AT xujiushuai inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection
AT fahrbachmichael inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection
AT kirschina inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection
AT uhdeerik inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection
AT deutschingeralexander inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection
AT fantnerernestj inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection
AT schwalbchristianh inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection
AT wasistohutomosuryo inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection
AT peinererwin inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection