Cargando…
In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection
In this study, we investigate the performance of two piezoresistive micro-electro-mechanical system (MEMS)-based silicon cantilever sensors for measuring target analytes (i.e., ultrafine particulate matters). We use two different types of cantilevers with geometric dimensions of 1000 × 170 × 19.5 µm...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038349/ https://www.ncbi.nlm.nih.gov/pubmed/31979161 http://dx.doi.org/10.3390/s20030618 |
_version_ | 1783500619831574528 |
---|---|
author | Setiono, Andi Bertke, Maik Nyang’au, Wilson Ombati Xu, Jiushuai Fahrbach, Michael Kirsch, Ina Uhde, Erik Deutschinger, Alexander Fantner, Ernest J. Schwalb, Christian H. Wasisto, Hutomo Suryo Peiner, Erwin |
author_facet | Setiono, Andi Bertke, Maik Nyang’au, Wilson Ombati Xu, Jiushuai Fahrbach, Michael Kirsch, Ina Uhde, Erik Deutschinger, Alexander Fantner, Ernest J. Schwalb, Christian H. Wasisto, Hutomo Suryo Peiner, Erwin |
author_sort | Setiono, Andi |
collection | PubMed |
description | In this study, we investigate the performance of two piezoresistive micro-electro-mechanical system (MEMS)-based silicon cantilever sensors for measuring target analytes (i.e., ultrafine particulate matters). We use two different types of cantilevers with geometric dimensions of 1000 × 170 × 19.5 µm(3) and 300 × 100 × 4 µm(3), which refer to the 1st and 2nd types of cantilevers, respectively. For the first case, the cantilever is configured to detect the fundamental in-plane bending mode and is actuated using a resistive heater. Similarly, the second type of cantilever sensor is actuated using a meandering resistive heater (bimorph) and is designed for out-of-plane operation. We have successfully employed these two cantilevers to measure and monitor the changes of mass concentration of carbon nanoparticles in air, provided by atomizing suspensions of these nanoparticles into a sealed chamber, ranging from 0 to several tens of µg/m(3) and oversize distributions from ~10 nm to ~350 nm. Here, we deploy both types of cantilever sensors and operate them simultaneously with a standard laboratory system (Fast Mobility Particle Sizer, FMPS, TSI 3091) as a reference. |
format | Online Article Text |
id | pubmed-7038349 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70383492020-03-09 In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection Setiono, Andi Bertke, Maik Nyang’au, Wilson Ombati Xu, Jiushuai Fahrbach, Michael Kirsch, Ina Uhde, Erik Deutschinger, Alexander Fantner, Ernest J. Schwalb, Christian H. Wasisto, Hutomo Suryo Peiner, Erwin Sensors (Basel) Article In this study, we investigate the performance of two piezoresistive micro-electro-mechanical system (MEMS)-based silicon cantilever sensors for measuring target analytes (i.e., ultrafine particulate matters). We use two different types of cantilevers with geometric dimensions of 1000 × 170 × 19.5 µm(3) and 300 × 100 × 4 µm(3), which refer to the 1st and 2nd types of cantilevers, respectively. For the first case, the cantilever is configured to detect the fundamental in-plane bending mode and is actuated using a resistive heater. Similarly, the second type of cantilever sensor is actuated using a meandering resistive heater (bimorph) and is designed for out-of-plane operation. We have successfully employed these two cantilevers to measure and monitor the changes of mass concentration of carbon nanoparticles in air, provided by atomizing suspensions of these nanoparticles into a sealed chamber, ranging from 0 to several tens of µg/m(3) and oversize distributions from ~10 nm to ~350 nm. Here, we deploy both types of cantilever sensors and operate them simultaneously with a standard laboratory system (Fast Mobility Particle Sizer, FMPS, TSI 3091) as a reference. MDPI 2020-01-22 /pmc/articles/PMC7038349/ /pubmed/31979161 http://dx.doi.org/10.3390/s20030618 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Setiono, Andi Bertke, Maik Nyang’au, Wilson Ombati Xu, Jiushuai Fahrbach, Michael Kirsch, Ina Uhde, Erik Deutschinger, Alexander Fantner, Ernest J. Schwalb, Christian H. Wasisto, Hutomo Suryo Peiner, Erwin In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection |
title | In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection |
title_full | In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection |
title_fullStr | In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection |
title_full_unstemmed | In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection |
title_short | In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection |
title_sort | in-plane and out-of-plane mems piezoresistive cantilever sensors for nanoparticle mass detection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038349/ https://www.ncbi.nlm.nih.gov/pubmed/31979161 http://dx.doi.org/10.3390/s20030618 |
work_keys_str_mv | AT setionoandi inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection AT bertkemaik inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection AT nyangauwilsonombati inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection AT xujiushuai inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection AT fahrbachmichael inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection AT kirschina inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection AT uhdeerik inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection AT deutschingeralexander inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection AT fantnerernestj inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection AT schwalbchristianh inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection AT wasistohutomosuryo inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection AT peinererwin inplaneandoutofplanememspiezoresistivecantileversensorsfornanoparticlemassdetection |