Cargando…
Robust Soft Sensor with Deep Kernel Learning for Quality Prediction in Rubber Mixing Processes
Although several data-driven soft sensors are available, online reliable prediction of the Mooney viscosity in industrial rubber mixing processes is still a challenging task. A robust semi-supervised soft sensor, called ensemble deep correntropy kernel regression (EDCKR), is proposed. It integrates...
Autores principales: | Zheng, Shuihua, Liu, Kaixin, Xu, Yili, Chen, Hao, Zhang, Xuelei, Liu, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038447/ https://www.ncbi.nlm.nih.gov/pubmed/32012753 http://dx.doi.org/10.3390/s20030695 |
Ejemplares similares
-
Deep Semi-Supervised Just-in-Time Learning Based Soft Sensor for Mooney Viscosity Estimation in Industrial Rubber Mixing Process
por: Zhang, Yan, et al.
Publicado: (2022) -
An Experimental Study of Briquetting Process of Torrefied Rubber Seed Kernel and Palm Oil Shell
por: Hamid, M. Fadzli, et al.
Publicado: (2016) -
Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
por: Lu, Chi-Ken, et al.
Publicado: (2021) -
Student’s-t Mixture Regression-Based Robust Soft Sensor Development for Multimode Industrial Processes
por: Wang, Jingbo, et al.
Publicado: (2018) -
Soft Wearable Piezoresistive Sensors Based on Natural Rubber Fabricated with a Customized Vat-Based Additive Manufacturing Process
por: Georgopoulou, Antonia, et al.
Publicado: (2023)