Cargando…
An End-to-End Oil-Spill Monitoring Method for Multisensory Satellite Images Based on Deep Semantic Segmentation
In remote-sensing images, a detected oil-spill area is usually affected by spot noise and uneven intensity, which leads to poor segmentation of the oil-spill area. This paper introduced a deep semantic segmentation method that combined a deep-convolution neural network with the fully connected condi...
Autores principales: | Chen, Yantong, Li, Yuyang, Wang, Junsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038449/ https://www.ncbi.nlm.nih.gov/pubmed/32012957 http://dx.doi.org/10.3390/s20030725 |
Ejemplares similares
-
Monitoring oil spill in Norilsk, Russia using satellite data
por: Rajendran, Sankaran, et al.
Publicado: (2021) -
Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model
por: Ainsworth, Cameron H., et al.
Publicado: (2018) -
New End-to-End Strategy Based on DeepLabv3+ Semantic Segmentation for Human Head Detection
por: Chouai, Mohamed, et al.
Publicado: (2021) -
Deep Semantic Segmentation of Angiogenesis Images
por: Ibragimov, Alisher, et al.
Publicado: (2023) -
A Method of Constructing Marine Oil Spill Scenarios from Flat Text Based on Semantic Analysis
por: Huang, Kui, et al.
Publicado: (2020)