Cargando…
Thermal Stability of Type II Modifications by IR Femtosecond Laser in Silica-based Glasses
Femtosecond (fs) laser written fiber Bragg gratings (FBGs) are excellent candidates for ultra-high temperature (>800 °C) monitoring. More specifically, Type II modifications in silicate glass fibers, characterized by the formation of self-organized birefringent nanostructures, are known to exhibi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038465/ https://www.ncbi.nlm.nih.gov/pubmed/32019146 http://dx.doi.org/10.3390/s20030762 |
Sumario: | Femtosecond (fs) laser written fiber Bragg gratings (FBGs) are excellent candidates for ultra-high temperature (>800 °C) monitoring. More specifically, Type II modifications in silicate glass fibers, characterized by the formation of self-organized birefringent nanostructures, are known to exhibit remarkable thermal stability around 1000 °C for several hours. However, to date there is no clear understanding on how both laser writing parameters and glass composition impact the overall thermal stability of these fiber-based sensors. In this context, this work investigates thermal stability of Type II modifications in various conventional glass systems (including pure silica glasses with various Cl and OH contents, GeO(2)-SiO(2) binary glasses, TiO(2)- and B(2)O(3)-doped commercial glasses) and with varying laser parameters (writing speed, pulse energy). In order to monitor thermal stability, isochronal annealing experiments (Δt⁓ 30 min, ΔT⁓ 50 °C) up to 1400 °C were performed on the irradiated samples, along with quantitative retardance measurements. Among the findings to highlight, it was established that ppm levels of Cl and OH can drastically reduce thermal stability (by about 200 °C in this study). Moreover, GeO(2) doping up to 17 mole% only has a limited impact on thermal stability. Finally, the relationships between glass viscosity, dopants/impurities, and thermal stability, are discussed. |
---|