Cargando…
Novel Giant Magnetoimpedance Magnetic Field Sensor
The idea, design, and tests of the novel GMI sensor are presented, based on the compensation measurement principle, where the local ‘zero-field’ minimum of the double-peak characteristic was utilized as a sensitive null detector. The compensation field was applied in real-time with the help of micro...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038477/ https://www.ncbi.nlm.nih.gov/pubmed/32012705 http://dx.doi.org/10.3390/s20030691 |
Sumario: | The idea, design, and tests of the novel GMI sensor are presented, based on the compensation measurement principle, where the local ‘zero-field’ minimum of the double-peak characteristic was utilized as a sensitive null detector. The compensation field was applied in real-time with the help of microprocessor-based, two-step, quasi-Newtonian optimization. The process of material parameters optimization through Joule-annealing of chosen amorphous alloys is described. The presented results of the prototype test unit show linear output characteristic, low measurement uncertainty, and resistance against time and temperature drift. |
---|