Cargando…
Video Image Enhancement and Machine Learning Pipeline for Underwater Animal Detection and Classification at Cabled Observatories
An understanding of marine ecosystems and their biodiversity is relevant to sustainable use of the goods and services they offer. Since marine areas host complex ecosystems, it is important to develop spatially widespread monitoring networks capable of providing large amounts of multiparametric info...
Autores principales: | Lopez-Vazquez, Vanesa, Lopez-Guede, Jose Manuel, Marini, Simone, Fanelli, Emanuela, Johnsen, Espen, Aguzzi, Jacopo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038495/ https://www.ncbi.nlm.nih.gov/pubmed/32012976 http://dx.doi.org/10.3390/s20030726 |
Ejemplares similares
-
Correction: Lopez-Vazquez et al. Video Image Enhancement and Machine Learning Pipeline for Underwater Animal Detection and Classification at Cabled Observatories. Sensors 2020, 20, 726
por: Lopez-Vazquez, Vanesa, et al.
Publicado: (2022) -
A New Colorimetrically-Calibrated Automated Video-Imaging Protocol for Day-Night Fish Counting at the OBSEA Coastal Cabled Observatory
por: del Río, Joaquín, et al.
Publicado: (2013) -
Tracking Fish Abundance by Underwater Image Recognition
por: Marini, Simone, et al.
Publicado: (2018) -
A Flexible Autonomous Robotic Observatory Infrastructure for Bentho-Pelagic Monitoring †
por: Aguzzi, Jacopo, et al.
Publicado: (2020) -
Towards Naples Ecological REsearch for Augmented Observatories (NEREA): The NEREA-Fix Module, a Stand-Alone Platform for Long-Term Deep-Sea Ecosystem Monitoring †
por: Fanelli, Emanuela, et al.
Publicado: (2020)