Cargando…
Automatic Tunnel Crack Detection Based on U-Net and a Convolutional Neural Network with Alternately Updated Clique
Regular crack inspection of tunnels is essential to guarantee their safe operation. At present, the manual detection method is time-consuming, subjective and even dangerous, while the automatic detection method is relatively inaccurate. Detecting tunnel cracks is a challenging task since cracks are...
Autores principales: | Li, Gang, Ma, Biao, He, Shuanhai, Ren, Xueli, Liu, Qiangwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038519/ https://www.ncbi.nlm.nih.gov/pubmed/32012919 http://dx.doi.org/10.3390/s20030717 |
Ejemplares similares
-
Automatic Detection of Cracks in Cracked Tooth Based on Binary Classification Convolutional Neural Networks
por: Guo, Juncheng, et al.
Publicado: (2022) -
MFOC-CliqueNet: A CliqueNet-Based Optimal Combination of Multidimensional Features Classification Method for Large-Scale Laser Point Clouds
por: Wang, Lei, et al.
Publicado: (2022) -
Automatic Pixel-Level Pavement Crack Recognition Using a Deep Feature Aggregation Segmentation Network with a scSE Attention Mechanism Module
por: Qiao, Wenting, et al.
Publicado: (2021) -
Application of Improved U-Net Convolutional Neural Network for Automatic Quantification of the Foveal Avascular Zone in Diabetic Macular Ischemia
por: Meng, Yongan, et al.
Publicado: (2022) -
Chromosomal cliques
por: Dove, Alan W.
Publicado: (2002)