Cargando…
On the Immunological Consequences of Conventionally Fractionated Radiotherapy
Emerging evidence demonstrates that radiotherapy induces immunogenic death on tumor cells that emit immunostimulating signals resulting in tumor-specific immune responses. However, the impact of tumor features and microenvironmental factors on the efficacy of radiation-induced immunity remains to be...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038527/ https://www.ncbi.nlm.nih.gov/pubmed/32092699 http://dx.doi.org/10.1016/j.isci.2020.100897 |
_version_ | 1783500660978745344 |
---|---|
author | Alfonso, Juan Carlos L. Papaxenopoulou, Lito A. Mascheroni, Pietro Meyer-Hermann, Michael Hatzikirou, Haralampos |
author_facet | Alfonso, Juan Carlos L. Papaxenopoulou, Lito A. Mascheroni, Pietro Meyer-Hermann, Michael Hatzikirou, Haralampos |
author_sort | Alfonso, Juan Carlos L. |
collection | PubMed |
description | Emerging evidence demonstrates that radiotherapy induces immunogenic death on tumor cells that emit immunostimulating signals resulting in tumor-specific immune responses. However, the impact of tumor features and microenvironmental factors on the efficacy of radiation-induced immunity remains to be elucidated. Herein, we use a calibrated model of tumor-effector cell interactions to investigate the potential benefits and immunological consequences of radiotherapy. Simulations analysis suggests that radiotherapy success depends on the functional tumor vascularity extent and reveals that the pre-treatment tumor size is not a consistent determinant of treatment outcomes. The one-size-fits-all approach of conventionally fractionated radiotherapy is predicted to result in some overtreated patients. In addition, model simulations also suggest that an arbitrary increase in treatment duration does not necessarily result in better tumor control. This study highlights the potential benefits of tumor-immune ecosystem profiling during treatment planning to better harness the immunogenic potential of radiotherapy. |
format | Online Article Text |
id | pubmed-7038527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-70385272020-03-02 On the Immunological Consequences of Conventionally Fractionated Radiotherapy Alfonso, Juan Carlos L. Papaxenopoulou, Lito A. Mascheroni, Pietro Meyer-Hermann, Michael Hatzikirou, Haralampos iScience Article Emerging evidence demonstrates that radiotherapy induces immunogenic death on tumor cells that emit immunostimulating signals resulting in tumor-specific immune responses. However, the impact of tumor features and microenvironmental factors on the efficacy of radiation-induced immunity remains to be elucidated. Herein, we use a calibrated model of tumor-effector cell interactions to investigate the potential benefits and immunological consequences of radiotherapy. Simulations analysis suggests that radiotherapy success depends on the functional tumor vascularity extent and reveals that the pre-treatment tumor size is not a consistent determinant of treatment outcomes. The one-size-fits-all approach of conventionally fractionated radiotherapy is predicted to result in some overtreated patients. In addition, model simulations also suggest that an arbitrary increase in treatment duration does not necessarily result in better tumor control. This study highlights the potential benefits of tumor-immune ecosystem profiling during treatment planning to better harness the immunogenic potential of radiotherapy. Elsevier 2020-02-11 /pmc/articles/PMC7038527/ /pubmed/32092699 http://dx.doi.org/10.1016/j.isci.2020.100897 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Alfonso, Juan Carlos L. Papaxenopoulou, Lito A. Mascheroni, Pietro Meyer-Hermann, Michael Hatzikirou, Haralampos On the Immunological Consequences of Conventionally Fractionated Radiotherapy |
title | On the Immunological Consequences of Conventionally Fractionated Radiotherapy |
title_full | On the Immunological Consequences of Conventionally Fractionated Radiotherapy |
title_fullStr | On the Immunological Consequences of Conventionally Fractionated Radiotherapy |
title_full_unstemmed | On the Immunological Consequences of Conventionally Fractionated Radiotherapy |
title_short | On the Immunological Consequences of Conventionally Fractionated Radiotherapy |
title_sort | on the immunological consequences of conventionally fractionated radiotherapy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038527/ https://www.ncbi.nlm.nih.gov/pubmed/32092699 http://dx.doi.org/10.1016/j.isci.2020.100897 |
work_keys_str_mv | AT alfonsojuancarlosl ontheimmunologicalconsequencesofconventionallyfractionatedradiotherapy AT papaxenopouloulitoa ontheimmunologicalconsequencesofconventionallyfractionatedradiotherapy AT mascheronipietro ontheimmunologicalconsequencesofconventionallyfractionatedradiotherapy AT meyerhermannmichael ontheimmunologicalconsequencesofconventionallyfractionatedradiotherapy AT hatzikirouharalampos ontheimmunologicalconsequencesofconventionallyfractionatedradiotherapy |