Cargando…
Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes
BACKGROUND: Transforming large amounts of genomic data into valuable knowledge for predicting complex traits has been an important challenge for animal and plant breeders. Prediction of complex traits has not escaped the current excitement on machine-learning, including interest in deep learning alg...
Autores principales: | Abdollahi-Arpanahi, Rostam, Gianola, Daniel, Peñagaricano, Francisco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038529/ https://www.ncbi.nlm.nih.gov/pubmed/32093611 http://dx.doi.org/10.1186/s12711-020-00531-z |
Ejemplares similares
-
Genome-enabled prediction of quantitative traits in chickens using genomic annotation
por: Morota, Gota, et al.
Publicado: (2014) -
Whole Genome Mapping Reveals Novel Genes and Pathways Involved in Milk Production Under Heat Stress in US Holstein Cows
por: Sigdel, Anil, et al.
Publicado: (2019) -
Differential contribution of genomic regions to marked genetic variation and prediction of quantitative traits in broiler chickens
por: Abdollahi-Arpanahi, Rostam, et al.
Publicado: (2016) -
Detecting effective starting point of genomic selection by divergent trends from best linear unbiased prediction and single-step genomic best linear unbiased prediction in pigs, beef cattle, and broilers
por: Abdollahi-Arpanahi, Rostam, et al.
Publicado: (2021) -
Targeted sequencing reveals candidate causal variants for dairy bull subfertility
por: Abdollahi‐Arpanahi, R., et al.
Publicado: (2021)