Cargando…
covRNA: discovering covariate associations in large-scale gene expression data
OBJECTIVE: The biological interpretation of gene expression measurements is a challenging task. While ordination methods are routinely used to identify clusters of samples or co-expressed genes, these methods do not take sample or gene annotations into account. We aim to provide a tool that allows u...
Autores principales: | Urban, Lara, Remmele, Christian W., Dittrich, Marcus, Schwarz, Roland F., Müller, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038619/ https://www.ncbi.nlm.nih.gov/pubmed/32093752 http://dx.doi.org/10.1186/s13104-020-04946-1 |
Ejemplares similares
-
Integrated inference and evaluation of host–fungi interaction networks
por: Remmele, Christian W., et al.
Publicado: (2015) -
SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets
por: Mao, Hongliang, et al.
Publicado: (2017) -
Understanding covariate shift in model performance
por: McGaughey, Georgia, et al.
Publicado: (2016) -
Transcriptional landscape and essential genes of Neisseria gonorrhoeae
por: Remmele, Christian W., et al.
Publicado: (2014) -
Development of Long Noncoding RNA-Based Strategies to Modulate Tissue Vascularization
por: Fiedler, Jan, et al.
Publicado: (2015)