Cargando…
Improved Deep CNN with Parameter Initialization for Data Analysis of Near-Infrared Spectroscopy Sensors
Near-infrared (NIR) spectral sensors can deliver the spectral response of light absorbed by materials. Data analysis technology based on NIR sensors has been a useful tool for quality identification. In this paper, an improved deep convolutional neural network (CNN) with batch normalization and MSRA...
Autores principales: | Wang, Di, Tian, Fengchun, Yang, Simon X., Zhu, Zhiqin, Jiang, Daiyu, Cai, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038673/ https://www.ncbi.nlm.nih.gov/pubmed/32041366 http://dx.doi.org/10.3390/s20030874 |
Ejemplares similares
-
Support Vector Machine Optimized by Genetic Algorithm for Data Analysis of Near-Infrared Spectroscopy Sensors
por: Wang, Di, et al.
Publicado: (2018) -
An Isolated CNN Architecture for Classification of Finger-Tapping Tasks Using Initial Dip Images: A Functional Near-Infrared Spectroscopy Study
por: Ali, Muhammad Umair, et al.
Publicado: (2023) -
Online Inspection of Browning in Yali Pears Using Visible-Near Infrared Spectroscopy and Interpretable Spectrogram-Based CNN Modeling
por: Hao, Yong, et al.
Publicado: (2023) -
Dataset of near infrared spectroscopy measurements to predict rheological parameters of sludge
por: Gibouin, F., et al.
Publicado: (2016) -
Determination of soybean routine quality parameters using near‐infrared spectroscopy
por: Zhu, Zhenying, et al.
Publicado: (2018)