Cargando…
A Maximum Likelihood Ensemble Filter via a Modified Cholesky Decomposition for Non-Gaussian Data Assimilation
This paper proposes an efficient and practical implementation of the Maximum Likelihood Ensemble Filter via a Modified Cholesky decomposition (MLEF-MC). The method works as follows: via an ensemble of model realizations, a well-conditioned and full-rank square-root approximation of the background er...
Autores principales: | Nino-Ruiz, Elias David, Mancilla-Herrera, Alfonso, Lopez-Restrepo, Santiago, Quintero-Montoya, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038685/ https://www.ncbi.nlm.nih.gov/pubmed/32041372 http://dx.doi.org/10.3390/s20030877 |
Ejemplares similares
-
A Random Line-Search Optimization Method via Modified Cholesky Decomposition for Non-linear Data Assimilation
por: Nino-Ruiz, Elias D.
Publicado: (2020) -
Implementation of Cholesky Decomposition with SIMD vectorization
por: Balasubramanian, Rahul
Publicado: (2016) -
Specifying a Gaussian Markov random field by a sparse Cholesky triangle
por: Wist, H T, et al.
Publicado: (2005) -
Data assimilation: the ensemble Kalman filter
por: Evensen, Geir
Publicado: (2007) -
Solving animal model equations through an approximate incomplete Cholesky decomposition
por: Ducrocq, V
Publicado: (1992)