Cargando…

Electrical and synaptic integration of glioma into neural circuits

High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated growth factor release promotes glioma growth, but this alone is insufficient to explain the effect that activity exerts on glioma progression. Here, we use single-cell transcr...

Descripción completa

Detalles Bibliográficos
Autores principales: Venkatesh, Humsa S., Morishita, Wade, Geraghty, Anna C., Silverbush, Dana, Gillespie, Shawn M., Arzt, Marlene, Tam, Lydia T., Espenel, Cedric, Ponnuswami, Anitha, Ni, Lijun, Woo, Pamelyn J., Taylor, Kathryn R., Agarwal, Amit, Regev, Aviv, Brang, David, Vogel, Hannes, Hervey-Jumper, Shawn, Bergles, Dwight E., Suvà, Mario L., Malenka, Robert C., Monje, Michelle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038898/
https://www.ncbi.nlm.nih.gov/pubmed/31534222
http://dx.doi.org/10.1038/s41586-019-1563-y
_version_ 1783500726399401984
author Venkatesh, Humsa S.
Morishita, Wade
Geraghty, Anna C.
Silverbush, Dana
Gillespie, Shawn M.
Arzt, Marlene
Tam, Lydia T.
Espenel, Cedric
Ponnuswami, Anitha
Ni, Lijun
Woo, Pamelyn J.
Taylor, Kathryn R.
Agarwal, Amit
Regev, Aviv
Brang, David
Vogel, Hannes
Hervey-Jumper, Shawn
Bergles, Dwight E.
Suvà, Mario L.
Malenka, Robert C.
Monje, Michelle
author_facet Venkatesh, Humsa S.
Morishita, Wade
Geraghty, Anna C.
Silverbush, Dana
Gillespie, Shawn M.
Arzt, Marlene
Tam, Lydia T.
Espenel, Cedric
Ponnuswami, Anitha
Ni, Lijun
Woo, Pamelyn J.
Taylor, Kathryn R.
Agarwal, Amit
Regev, Aviv
Brang, David
Vogel, Hannes
Hervey-Jumper, Shawn
Bergles, Dwight E.
Suvà, Mario L.
Malenka, Robert C.
Monje, Michelle
author_sort Venkatesh, Humsa S.
collection PubMed
description High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated growth factor release promotes glioma growth, but this alone is insufficient to explain the effect that activity exerts on glioma progression. Here, we use single-cell transcriptomics, electron microscopy, whole-cell patch-clamp electrophysiology and calcium imaging to demonstrate that neuron-glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron-glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified through gap junction-mediated tumor interconnections forming an electrically-coupled network. Glioma membrane depolarization assessed with in vivo optogenetics promotes proliferation, while pharmacologically or genetically blocking electrochemical signaling inhibits glioma xenograft growth and extends mouse survival. Emphasizing positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in glioma-infiltrated brain. Together, these findings indicate that synaptic and electrical integration in neural circuits promotes glioma progression.
format Online
Article
Text
id pubmed-7038898
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-70388982020-03-18 Electrical and synaptic integration of glioma into neural circuits Venkatesh, Humsa S. Morishita, Wade Geraghty, Anna C. Silverbush, Dana Gillespie, Shawn M. Arzt, Marlene Tam, Lydia T. Espenel, Cedric Ponnuswami, Anitha Ni, Lijun Woo, Pamelyn J. Taylor, Kathryn R. Agarwal, Amit Regev, Aviv Brang, David Vogel, Hannes Hervey-Jumper, Shawn Bergles, Dwight E. Suvà, Mario L. Malenka, Robert C. Monje, Michelle Nature Article High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated growth factor release promotes glioma growth, but this alone is insufficient to explain the effect that activity exerts on glioma progression. Here, we use single-cell transcriptomics, electron microscopy, whole-cell patch-clamp electrophysiology and calcium imaging to demonstrate that neuron-glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron-glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified through gap junction-mediated tumor interconnections forming an electrically-coupled network. Glioma membrane depolarization assessed with in vivo optogenetics promotes proliferation, while pharmacologically or genetically blocking electrochemical signaling inhibits glioma xenograft growth and extends mouse survival. Emphasizing positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in glioma-infiltrated brain. Together, these findings indicate that synaptic and electrical integration in neural circuits promotes glioma progression. 2019-09-18 2019-09 /pmc/articles/PMC7038898/ /pubmed/31534222 http://dx.doi.org/10.1038/s41586-019-1563-y Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Venkatesh, Humsa S.
Morishita, Wade
Geraghty, Anna C.
Silverbush, Dana
Gillespie, Shawn M.
Arzt, Marlene
Tam, Lydia T.
Espenel, Cedric
Ponnuswami, Anitha
Ni, Lijun
Woo, Pamelyn J.
Taylor, Kathryn R.
Agarwal, Amit
Regev, Aviv
Brang, David
Vogel, Hannes
Hervey-Jumper, Shawn
Bergles, Dwight E.
Suvà, Mario L.
Malenka, Robert C.
Monje, Michelle
Electrical and synaptic integration of glioma into neural circuits
title Electrical and synaptic integration of glioma into neural circuits
title_full Electrical and synaptic integration of glioma into neural circuits
title_fullStr Electrical and synaptic integration of glioma into neural circuits
title_full_unstemmed Electrical and synaptic integration of glioma into neural circuits
title_short Electrical and synaptic integration of glioma into neural circuits
title_sort electrical and synaptic integration of glioma into neural circuits
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038898/
https://www.ncbi.nlm.nih.gov/pubmed/31534222
http://dx.doi.org/10.1038/s41586-019-1563-y
work_keys_str_mv AT venkateshhumsas electricalandsynapticintegrationofgliomaintoneuralcircuits
AT morishitawade electricalandsynapticintegrationofgliomaintoneuralcircuits
AT geraghtyannac electricalandsynapticintegrationofgliomaintoneuralcircuits
AT silverbushdana electricalandsynapticintegrationofgliomaintoneuralcircuits
AT gillespieshawnm electricalandsynapticintegrationofgliomaintoneuralcircuits
AT arztmarlene electricalandsynapticintegrationofgliomaintoneuralcircuits
AT tamlydiat electricalandsynapticintegrationofgliomaintoneuralcircuits
AT espenelcedric electricalandsynapticintegrationofgliomaintoneuralcircuits
AT ponnuswamianitha electricalandsynapticintegrationofgliomaintoneuralcircuits
AT nilijun electricalandsynapticintegrationofgliomaintoneuralcircuits
AT woopamelynj electricalandsynapticintegrationofgliomaintoneuralcircuits
AT taylorkathrynr electricalandsynapticintegrationofgliomaintoneuralcircuits
AT agarwalamit electricalandsynapticintegrationofgliomaintoneuralcircuits
AT regevaviv electricalandsynapticintegrationofgliomaintoneuralcircuits
AT brangdavid electricalandsynapticintegrationofgliomaintoneuralcircuits
AT vogelhannes electricalandsynapticintegrationofgliomaintoneuralcircuits
AT herveyjumpershawn electricalandsynapticintegrationofgliomaintoneuralcircuits
AT berglesdwighte electricalandsynapticintegrationofgliomaintoneuralcircuits
AT suvamariol electricalandsynapticintegrationofgliomaintoneuralcircuits
AT malenkarobertc electricalandsynapticintegrationofgliomaintoneuralcircuits
AT monjemichelle electricalandsynapticintegrationofgliomaintoneuralcircuits