Cargando…
Electrical and synaptic integration of glioma into neural circuits
High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated growth factor release promotes glioma growth, but this alone is insufficient to explain the effect that activity exerts on glioma progression. Here, we use single-cell transcr...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038898/ https://www.ncbi.nlm.nih.gov/pubmed/31534222 http://dx.doi.org/10.1038/s41586-019-1563-y |
_version_ | 1783500726399401984 |
---|---|
author | Venkatesh, Humsa S. Morishita, Wade Geraghty, Anna C. Silverbush, Dana Gillespie, Shawn M. Arzt, Marlene Tam, Lydia T. Espenel, Cedric Ponnuswami, Anitha Ni, Lijun Woo, Pamelyn J. Taylor, Kathryn R. Agarwal, Amit Regev, Aviv Brang, David Vogel, Hannes Hervey-Jumper, Shawn Bergles, Dwight E. Suvà, Mario L. Malenka, Robert C. Monje, Michelle |
author_facet | Venkatesh, Humsa S. Morishita, Wade Geraghty, Anna C. Silverbush, Dana Gillespie, Shawn M. Arzt, Marlene Tam, Lydia T. Espenel, Cedric Ponnuswami, Anitha Ni, Lijun Woo, Pamelyn J. Taylor, Kathryn R. Agarwal, Amit Regev, Aviv Brang, David Vogel, Hannes Hervey-Jumper, Shawn Bergles, Dwight E. Suvà, Mario L. Malenka, Robert C. Monje, Michelle |
author_sort | Venkatesh, Humsa S. |
collection | PubMed |
description | High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated growth factor release promotes glioma growth, but this alone is insufficient to explain the effect that activity exerts on glioma progression. Here, we use single-cell transcriptomics, electron microscopy, whole-cell patch-clamp electrophysiology and calcium imaging to demonstrate that neuron-glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron-glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified through gap junction-mediated tumor interconnections forming an electrically-coupled network. Glioma membrane depolarization assessed with in vivo optogenetics promotes proliferation, while pharmacologically or genetically blocking electrochemical signaling inhibits glioma xenograft growth and extends mouse survival. Emphasizing positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in glioma-infiltrated brain. Together, these findings indicate that synaptic and electrical integration in neural circuits promotes glioma progression. |
format | Online Article Text |
id | pubmed-7038898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-70388982020-03-18 Electrical and synaptic integration of glioma into neural circuits Venkatesh, Humsa S. Morishita, Wade Geraghty, Anna C. Silverbush, Dana Gillespie, Shawn M. Arzt, Marlene Tam, Lydia T. Espenel, Cedric Ponnuswami, Anitha Ni, Lijun Woo, Pamelyn J. Taylor, Kathryn R. Agarwal, Amit Regev, Aviv Brang, David Vogel, Hannes Hervey-Jumper, Shawn Bergles, Dwight E. Suvà, Mario L. Malenka, Robert C. Monje, Michelle Nature Article High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated growth factor release promotes glioma growth, but this alone is insufficient to explain the effect that activity exerts on glioma progression. Here, we use single-cell transcriptomics, electron microscopy, whole-cell patch-clamp electrophysiology and calcium imaging to demonstrate that neuron-glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron-glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified through gap junction-mediated tumor interconnections forming an electrically-coupled network. Glioma membrane depolarization assessed with in vivo optogenetics promotes proliferation, while pharmacologically or genetically blocking electrochemical signaling inhibits glioma xenograft growth and extends mouse survival. Emphasizing positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in glioma-infiltrated brain. Together, these findings indicate that synaptic and electrical integration in neural circuits promotes glioma progression. 2019-09-18 2019-09 /pmc/articles/PMC7038898/ /pubmed/31534222 http://dx.doi.org/10.1038/s41586-019-1563-y Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Venkatesh, Humsa S. Morishita, Wade Geraghty, Anna C. Silverbush, Dana Gillespie, Shawn M. Arzt, Marlene Tam, Lydia T. Espenel, Cedric Ponnuswami, Anitha Ni, Lijun Woo, Pamelyn J. Taylor, Kathryn R. Agarwal, Amit Regev, Aviv Brang, David Vogel, Hannes Hervey-Jumper, Shawn Bergles, Dwight E. Suvà, Mario L. Malenka, Robert C. Monje, Michelle Electrical and synaptic integration of glioma into neural circuits |
title | Electrical and synaptic integration of glioma into neural circuits |
title_full | Electrical and synaptic integration of glioma into neural circuits |
title_fullStr | Electrical and synaptic integration of glioma into neural circuits |
title_full_unstemmed | Electrical and synaptic integration of glioma into neural circuits |
title_short | Electrical and synaptic integration of glioma into neural circuits |
title_sort | electrical and synaptic integration of glioma into neural circuits |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038898/ https://www.ncbi.nlm.nih.gov/pubmed/31534222 http://dx.doi.org/10.1038/s41586-019-1563-y |
work_keys_str_mv | AT venkateshhumsas electricalandsynapticintegrationofgliomaintoneuralcircuits AT morishitawade electricalandsynapticintegrationofgliomaintoneuralcircuits AT geraghtyannac electricalandsynapticintegrationofgliomaintoneuralcircuits AT silverbushdana electricalandsynapticintegrationofgliomaintoneuralcircuits AT gillespieshawnm electricalandsynapticintegrationofgliomaintoneuralcircuits AT arztmarlene electricalandsynapticintegrationofgliomaintoneuralcircuits AT tamlydiat electricalandsynapticintegrationofgliomaintoneuralcircuits AT espenelcedric electricalandsynapticintegrationofgliomaintoneuralcircuits AT ponnuswamianitha electricalandsynapticintegrationofgliomaintoneuralcircuits AT nilijun electricalandsynapticintegrationofgliomaintoneuralcircuits AT woopamelynj electricalandsynapticintegrationofgliomaintoneuralcircuits AT taylorkathrynr electricalandsynapticintegrationofgliomaintoneuralcircuits AT agarwalamit electricalandsynapticintegrationofgliomaintoneuralcircuits AT regevaviv electricalandsynapticintegrationofgliomaintoneuralcircuits AT brangdavid electricalandsynapticintegrationofgliomaintoneuralcircuits AT vogelhannes electricalandsynapticintegrationofgliomaintoneuralcircuits AT herveyjumpershawn electricalandsynapticintegrationofgliomaintoneuralcircuits AT berglesdwighte electricalandsynapticintegrationofgliomaintoneuralcircuits AT suvamariol electricalandsynapticintegrationofgliomaintoneuralcircuits AT malenkarobertc electricalandsynapticintegrationofgliomaintoneuralcircuits AT monjemichelle electricalandsynapticintegrationofgliomaintoneuralcircuits |