Cargando…

DNA targeting by Clostridium cellulolyticum CRISPR–Cas9 Type II-C system

Type II CRISPR–Cas9 RNA-guided nucleases are widely used for genome engineering. Type II-A SpCas9 protein from Streptococcus pyogenes is the most investigated and highly used enzyme of its class. Nevertheless, it has some drawbacks, including a relatively big size, imperfect specificity and restrict...

Descripción completa

Detalles Bibliográficos
Autores principales: Fedorova, Iana, Arseniev, Anatolii, Selkova, Polina, Pobegalov, Georgii, Goryanin, Ignatiy, Vasileva, Aleksandra, Musharova, Olga, Abramova, Marina, Kazalov, Maksim, Zyubko, Tatyana, Artamonova, Tatyana, Artamonova, Daria, Shmakov, Sergey, Khodorkovskii, Mikhail, Severinov, Konstantin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038990/
https://www.ncbi.nlm.nih.gov/pubmed/31943070
http://dx.doi.org/10.1093/nar/gkz1225
Descripción
Sumario:Type II CRISPR–Cas9 RNA-guided nucleases are widely used for genome engineering. Type II-A SpCas9 protein from Streptococcus pyogenes is the most investigated and highly used enzyme of its class. Nevertheless, it has some drawbacks, including a relatively big size, imperfect specificity and restriction to DNA targets flanked by an NGG PAM sequence. Cas9 orthologs from other bacterial species may provide a rich and largely untapped source of biochemical diversity, which can help to overcome the limitations of SpCas9. Here, we characterize CcCas9, a Type II-C CRISPR nuclease from Clostridium cellulolyticum H10. We show that CcCas9 is an active endonuclease of comparatively small size that recognizes a novel two-nucleotide PAM sequence. The CcCas9 can potentially broaden the existing scope of biotechnological applications of Cas9 nucleases and may be particularly advantageous for genome editing of C. cellulolyticum H10, a bacterium considered to be a promising biofuel producer.