Cargando…
The Design and Verification of an Active SAMSR Ultrasonic Guided Wave Monitoring System with Ultra-Low Crosstalk
Due to long propagation distance and high sensitivity to a variety of damages, ultrasonic guided wave technologies have been widely applied in the damage detection or health monitoring of pipe networks and large plate-like structures. However, there are two important problems to be solved when apply...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039011/ https://www.ncbi.nlm.nih.gov/pubmed/32046195 http://dx.doi.org/10.3390/s20030898 |
Sumario: | Due to long propagation distance and high sensitivity to a variety of damages, ultrasonic guided wave technologies have been widely applied in the damage detection or health monitoring of pipe networks and large plate-like structures. However, there are two important problems to be solved when applying this technology; namely, the large scanning time required for monitoring large-scaled structures and the serious crosstalk between the actuation and receiving signals, especially when monitoring hot-spot regions. Therefore, this study mainly designed key parts, such as the matrix switcher and attenuation circuit. The single-actuation and multiple-simultaneous-reception (SAMSR) mechanism based on an analog switching matrix and a low noise charge amplifier circuit was designed and integrated with the SPI control bus to shorten the scanning time. Moreover, a two-stage attenuation circuit with an interlocking isolation structure is presented to effectively isolate the receiving signals from the actuation signals to obtain ultra-low crosstalk even under a high voltage actuation source. In this study, the designed matrix switcher and other components were integrated into the developed ultrasonic guided wave monitoring system. Several experiments were conducted on a stiffened composite structure to illustrate the effectivity of the developed SAMSR ultrasonic guided wave system by comparing the signals collected with those from a commercial ultrasonic guided wave system. |
---|