Cargando…
Deregulation of cell adhesion molecules is associated with progression and poor outcomes in endometrial cancer: Analysis of The Cancer Genome Atlas data
Cell adhesion molecules (CAMs) determine the behavior of cancer cells during metastasis. Although some CAMs are dysregulated in certain types of cancer and are associated with cancer progression, to the best of our knowledge, a comprehensive study of CAMs has not been undertaken, particularly in end...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039152/ https://www.ncbi.nlm.nih.gov/pubmed/32194686 http://dx.doi.org/10.3892/ol.2020.11295 |
Sumario: | Cell adhesion molecules (CAMs) determine the behavior of cancer cells during metastasis. Although some CAMs are dysregulated in certain types of cancer and are associated with cancer progression, to the best of our knowledge, a comprehensive study of CAMs has not been undertaken, particularly in endometrial cancer (EC). In the present study the expression of 225 CAMs in EC patients with various clinicopathological phenotypes were evaluated by statistical analysis using publicly available data from The Cancer Genome Atlas database. The Kaplan-Meier method, and univariate and multivariate Cox proportional hazards regression models were used for survival analyses. Among the differentially expressed CAMs that were associated with aggressive clinicopathological phenotypes, 10 CAM genes were independent prognostic factors compared with other clinicopathological prognostic factors, including stage, grade, age, lymph node status, peritoneal cytology and histological subtype. A total of six genes (L1 cell adhesion molecule, mucin 15, cell surface associated, cell adhesion associated, oncogene regulated, immunoglobulin superfamily member 9B, protocadherin 9 and protocadherin β1) were selected for integrative analysis. The six-gene signature was demonstrated to be an independent prognostic factor and could effectively stratify patients with different risks. Patients with more high-expression CAMs had a higher risk of poor overall survival (OS) rate. The mortality risk for patients with elevation of >4 CAMs was 11 times of that in those without elevation of these 6 CAMs. Similar results were obtained when relapse-free survival (RFS) time was used during the analysis. Prognostic reliability of the six-gene model was validated using data of an independent cohort from the International Cancer Genome Consortium. In conclusion, a combination of CAM alterations contributed to progression and aggressiveness of EC. The six-gene signature was effective for predicting worse OS and RFS in patients with EC and could be complementary to the present clinical prognostic criteria. |
---|