Cargando…
Coupling APEX labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover
Quantification of stable isotope tracers after metabolic labeling provides a snapshot of the dynamic state of living cells and tissue. A form of imaging mass spectrometry quantifies isotope ratios with a lateral resolution <50 nm, using a methodology that we refer to as multi-isotope imaging mass...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039203/ https://www.ncbi.nlm.nih.gov/pubmed/31719114 http://dx.doi.org/10.1083/jcb.201901097 |
_version_ | 1783500778932011008 |
---|---|
author | Narendra, Derek P. Guillermier, Christelle Gyngard, Frank Huang, Xiaoping Ward, Michael E. Steinhauser, Matthew L. |
author_facet | Narendra, Derek P. Guillermier, Christelle Gyngard, Frank Huang, Xiaoping Ward, Michael E. Steinhauser, Matthew L. |
author_sort | Narendra, Derek P. |
collection | PubMed |
description | Quantification of stable isotope tracers after metabolic labeling provides a snapshot of the dynamic state of living cells and tissue. A form of imaging mass spectrometry quantifies isotope ratios with a lateral resolution <50 nm, using a methodology that we refer to as multi-isotope imaging mass spectrometry (MIMS). Despite lateral resolution exceeding diffraction-limited light microscopy, lack of contrast has largely limited use of MIMS to large or specialized subcellular structures, such as the nucleus and stereocilia. In this study, we repurpose the engineered peroxidase APEX2 as the first genetically encoded marker for MIMS. Coupling APEX2 labeling of lysosomes and metabolic labeling of protein, we identify that individual lysosomes exhibit substantial heterogeneity in protein age, which is lost in iPSC-derived neurons lacking the lysosomal protein progranulin. This study expands the practical use of MIMS for cell biology by enabling measurements of metabolic function from stable isotope labeling within individual organelles in situ. |
format | Online Article Text |
id | pubmed-7039203 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-70392032020-07-06 Coupling APEX labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover Narendra, Derek P. Guillermier, Christelle Gyngard, Frank Huang, Xiaoping Ward, Michael E. Steinhauser, Matthew L. J Cell Biol Research Articles Quantification of stable isotope tracers after metabolic labeling provides a snapshot of the dynamic state of living cells and tissue. A form of imaging mass spectrometry quantifies isotope ratios with a lateral resolution <50 nm, using a methodology that we refer to as multi-isotope imaging mass spectrometry (MIMS). Despite lateral resolution exceeding diffraction-limited light microscopy, lack of contrast has largely limited use of MIMS to large or specialized subcellular structures, such as the nucleus and stereocilia. In this study, we repurpose the engineered peroxidase APEX2 as the first genetically encoded marker for MIMS. Coupling APEX2 labeling of lysosomes and metabolic labeling of protein, we identify that individual lysosomes exhibit substantial heterogeneity in protein age, which is lost in iPSC-derived neurons lacking the lysosomal protein progranulin. This study expands the practical use of MIMS for cell biology by enabling measurements of metabolic function from stable isotope labeling within individual organelles in situ. Rockefeller University Press 2019-11-12 /pmc/articles/PMC7039203/ /pubmed/31719114 http://dx.doi.org/10.1083/jcb.201901097 Text en This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Research Articles Narendra, Derek P. Guillermier, Christelle Gyngard, Frank Huang, Xiaoping Ward, Michael E. Steinhauser, Matthew L. Coupling APEX labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover |
title | Coupling APEX labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover |
title_full | Coupling APEX labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover |
title_fullStr | Coupling APEX labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover |
title_full_unstemmed | Coupling APEX labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover |
title_short | Coupling APEX labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover |
title_sort | coupling apex labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039203/ https://www.ncbi.nlm.nih.gov/pubmed/31719114 http://dx.doi.org/10.1083/jcb.201901097 |
work_keys_str_mv | AT narendraderekp couplingapexlabelingtoimagingmassspectrometryofsingleorganellesrevealsheterogeneityinlysosomalproteinturnover AT guillermierchristelle couplingapexlabelingtoimagingmassspectrometryofsingleorganellesrevealsheterogeneityinlysosomalproteinturnover AT gyngardfrank couplingapexlabelingtoimagingmassspectrometryofsingleorganellesrevealsheterogeneityinlysosomalproteinturnover AT huangxiaoping couplingapexlabelingtoimagingmassspectrometryofsingleorganellesrevealsheterogeneityinlysosomalproteinturnover AT wardmichaele couplingapexlabelingtoimagingmassspectrometryofsingleorganellesrevealsheterogeneityinlysosomalproteinturnover AT steinhausermatthewl couplingapexlabelingtoimagingmassspectrometryofsingleorganellesrevealsheterogeneityinlysosomalproteinturnover |