Cargando…
Hand Gesture Recognition Using Compact CNN via Surface Electromyography Signals
By training the deep neural network model, the hidden features in Surface Electromyography(sEMG) signals can be extracted. The motion intention of the human can be predicted by analysis of sEMG. However, the models recently proposed by researchers often have a large number of parameters. Therefore,...
Autores principales: | Chen, Lin, Fu, Jianting, Wu, Yuheng, Li, Haochen, Zheng, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039218/ https://www.ncbi.nlm.nih.gov/pubmed/31991849 http://dx.doi.org/10.3390/s20030672 |
Ejemplares similares
-
Finger Gesture Recognition Using Sensing and Classification of Surface Electromyography Signals With High-Precision Wireless Surface Electromyography Sensors
por: Fu, Jianting, et al.
Publicado: (2021) -
Data Augmentation of Surface Electromyography for Hand Gesture Recognition
por: Tsinganos, Panagiotis, et al.
Publicado: (2020) -
putEMG—A Surface Electromyography Hand Gesture Recognition Dataset
por: Kaczmarek, Piotr, et al.
Publicado: (2019) -
Surgical Instrument Signaling Gesture Recognition Using Surface Electromyography Signals
por: Freitas, Melissa La Banca, et al.
Publicado: (2023) -
Basic Hand Gestures Classification Based on Surface Electromyography
por: Palkowski, Aleksander, et al.
Publicado: (2016)