Cargando…
On-Line Visual Tracking with Occlusion Handling †
One of the core challenges in visual multi-target tracking is occlusion. This is especially important in applications such as video surveillance and sports analytics. While offline batch processing algorithms can utilise future measurements to handle occlusion effectively, online algorithms have to...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039229/ https://www.ncbi.nlm.nih.gov/pubmed/32050574 http://dx.doi.org/10.3390/s20030929 |
_version_ | 1783500785034723328 |
---|---|
author | Rathnayake, Tharindu Khodadadian Gostar, Amirali Hoseinnezhad, Reza Tennakoon, Ruwan Bab-Hadiashar, Alireza |
author_facet | Rathnayake, Tharindu Khodadadian Gostar, Amirali Hoseinnezhad, Reza Tennakoon, Ruwan Bab-Hadiashar, Alireza |
author_sort | Rathnayake, Tharindu |
collection | PubMed |
description | One of the core challenges in visual multi-target tracking is occlusion. This is especially important in applications such as video surveillance and sports analytics. While offline batch processing algorithms can utilise future measurements to handle occlusion effectively, online algorithms have to rely on current and past measurements only. As such, it is markedly more challenging to handle occlusion in online applications. To address this problem, we propagate information over time in a way that it generates a sense of déjà vu when similar visual and motion features are observed. To achieve this, we extend the Generalized Labeled Multi-Bernoulli (GLMB) filter, originally designed for tracking point-sized targets, to be used in visual multi-target tracking. The proposed algorithm includes a novel false alarm detection/removal and label recovery methods capable of reliably recovering tracks that are even lost for a substantial period of time. We compare the performance of the proposed method with the state-of-the-art methods in challenging datasets using standard visual tracking metrics. Our comparisons show that the proposed method performs favourably compared to the state-of-the-art methods, particularly in terms of ID switches and fragmentation metrics which signifies occlusion. |
format | Online Article Text |
id | pubmed-7039229 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70392292020-03-09 On-Line Visual Tracking with Occlusion Handling † Rathnayake, Tharindu Khodadadian Gostar, Amirali Hoseinnezhad, Reza Tennakoon, Ruwan Bab-Hadiashar, Alireza Sensors (Basel) Article One of the core challenges in visual multi-target tracking is occlusion. This is especially important in applications such as video surveillance and sports analytics. While offline batch processing algorithms can utilise future measurements to handle occlusion effectively, online algorithms have to rely on current and past measurements only. As such, it is markedly more challenging to handle occlusion in online applications. To address this problem, we propagate information over time in a way that it generates a sense of déjà vu when similar visual and motion features are observed. To achieve this, we extend the Generalized Labeled Multi-Bernoulli (GLMB) filter, originally designed for tracking point-sized targets, to be used in visual multi-target tracking. The proposed algorithm includes a novel false alarm detection/removal and label recovery methods capable of reliably recovering tracks that are even lost for a substantial period of time. We compare the performance of the proposed method with the state-of-the-art methods in challenging datasets using standard visual tracking metrics. Our comparisons show that the proposed method performs favourably compared to the state-of-the-art methods, particularly in terms of ID switches and fragmentation metrics which signifies occlusion. MDPI 2020-02-10 /pmc/articles/PMC7039229/ /pubmed/32050574 http://dx.doi.org/10.3390/s20030929 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rathnayake, Tharindu Khodadadian Gostar, Amirali Hoseinnezhad, Reza Tennakoon, Ruwan Bab-Hadiashar, Alireza On-Line Visual Tracking with Occlusion Handling † |
title | On-Line Visual Tracking with Occlusion Handling † |
title_full | On-Line Visual Tracking with Occlusion Handling † |
title_fullStr | On-Line Visual Tracking with Occlusion Handling † |
title_full_unstemmed | On-Line Visual Tracking with Occlusion Handling † |
title_short | On-Line Visual Tracking with Occlusion Handling † |
title_sort | on-line visual tracking with occlusion handling † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039229/ https://www.ncbi.nlm.nih.gov/pubmed/32050574 http://dx.doi.org/10.3390/s20030929 |
work_keys_str_mv | AT rathnayaketharindu onlinevisualtrackingwithocclusionhandling AT khodadadiangostaramirali onlinevisualtrackingwithocclusionhandling AT hoseinnezhadreza onlinevisualtrackingwithocclusionhandling AT tennakoonruwan onlinevisualtrackingwithocclusionhandling AT babhadiasharalireza onlinevisualtrackingwithocclusionhandling |