Cargando…

The Intraosseous Dysfunction in the Osteopathic Perspective: Mechanisms Implicating the Bone Tissue

The somatic dysfunction (SD) is a protagonist in the context of theories and practices involving osteopathy and various other manual therapy methods. It is considered an obstacle to the body's inherent self-regulatory capabilities, and several tissues may be involved in this dysfunctional proce...

Descripción completa

Detalles Bibliográficos
Autor principal: Bicalho, Eduardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039361/
https://www.ncbi.nlm.nih.gov/pubmed/32140328
http://dx.doi.org/10.7759/cureus.6760
Descripción
Sumario:The somatic dysfunction (SD) is a protagonist in the context of theories and practices involving osteopathy and various other manual therapy methods. It is considered an obstacle to the body's inherent self-regulatory capabilities, and several tissues may be involved in this dysfunctional process, including the bone. The so-called intraosseous dysfunction refers to the restriction of natural flexibility of the fibrous components of the bone tissue matrix, or of the nonossified cartilaginous or membranous areas. Bone is a connective tissue composed of inorganic material and specialized cells organized in a hydrated extracellular matrix that provides the mechanical qualities to the tissue. The development of the bone tissue is a continuous process throughout life, and some bones fuse only years or decades after birth. It has microanatomical continuity with other adjacent structures and its different compartments are supplied by fluids, as well as somatic and autonomic innervation. Several studies show the phenomenon of bone tissue sensitization under traumatic, pathological conditions and also movement restriction. The purpose of the article is to review well-established knowledge and recent scientific findings regarding bone tissue anatomy and physiology, in an attempt to offer insights that could be applied to better understand the mechanisms implicating the intraosseus dysfunctions and its local and global repercussions.