Cargando…
Dorsal Hippocampus ERK2 Signaling Mediates Anxiolytic-Related Behavior in Male Rats
BACKGROUND: Anxiety disorders are the most common neuropathologies worldwide, but the precise neuronal mechanisms that underlie these disorders remain unknown. The hippocampus plays a role in mediating anxiety-related responses, which can be modeled in rodents using behavioral assays, such as the el...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039622/ https://www.ncbi.nlm.nih.gov/pubmed/32095734 http://dx.doi.org/10.1177/2470547019897030 |
Sumario: | BACKGROUND: Anxiety disorders are the most common neuropathologies worldwide, but the precise neuronal mechanisms that underlie these disorders remain unknown. The hippocampus plays a role in mediating anxiety-related responses, which can be modeled in rodents using behavioral assays, such as the elevated plus maze. Yet, the molecular markers that underlie affect-related behavior on the elevated plus maze are not well understood. METHODS: We used herpes simplex virus vector delivery to overexpress extracellular signal-regulated kinase-2, a signaling molecule known to be involved in depression and anxiety, within the dorsal hippocampus of adult Sprague-Dawley male rats. Three days post virus delivery, we assessed anxiety-like responses on the elevated plus maze or general locomotor activity on the open field test. RESULTS: When compared to controls, rats overexpressing extracellular signal-regulated kinase-2 in the dorsal hippocampus displayed an anxiolytic-like phenotype, per increases in time spent in the open arms, and less time in the closed arms, of the elevated plus maze. Furthermore, no changes in locomotor activity as a function of virus infusion were observed on the open field test between the experimental groups. CONCLUSION: This investigation demonstrates that virus-mediated increases of extracellular signal-regulated kinase-2 signaling, within the hippocampus, plays a critical role in decreasing anxiogenic responses on the rat elevated plus maze. As such, our data provide construct validity, at least in part, to the molecular mechanisms that mediate anxiolytic-like behavior in rodent models for the study of anxiety. |
---|