Cargando…
Computable upper error bounds for Krylov approximations to matrix exponentials and associated [Formula: see text] -functions
An a posteriori estimate for the error of a standard Krylov approximation to the matrix exponential is derived. The estimate is based on the defect (residual) of the Krylov approximation and is proven to constitute a rigorous upper bound on the error, in contrast to existing asymptotical approximati...
Autores principales: | Jawecki, Tobias, Auzinger, Winfried, Koch, Othmar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039864/ https://www.ncbi.nlm.nih.gov/pubmed/32161518 http://dx.doi.org/10.1007/s10543-019-00771-6 |
Ejemplares similares
-
A new upper bound of geometric constant [Formula: see text]
por: Li, Jin Huan, et al.
Publicado: (2017) -
[Formula: see text]-Approximation for Graphic TSP
por: Mucha, Marcin
Publicado: (2012) -
Quasi-maximum exponential likelihood estimator and portmanteau test of double [Formula: see text] model based on [Formula: see text]
por: Xuan, Haiyan, et al.
Publicado: (2018) -
The [Formula: see text] massive operator matrix elements of [Formula: see text] for the structure function [Formula: see text] and transversity
por: Ablinger, J., et al.
Publicado: (2011) -
An alternative error bound for linear complementarity problems involving [Formula: see text] -matrices
por: Gao, Lei
Publicado: (2018)