Cargando…
Embedding the intrinsic relevance of vertices in network analysis: the case of centrality metrics
Complex network theory (CNT) is gaining a lot of attention in the scientific community, due to its capability to model and interpret an impressive number of natural and anthropic phenomena. One of the most active CNT field concerns the evaluation of the centrality of vertices and edges in the networ...
Autores principales: | Giustolisi, Orazio, Ridolfi, Luca, Simone, Antonietta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039870/ https://www.ncbi.nlm.nih.gov/pubmed/32094431 http://dx.doi.org/10.1038/s41598-020-60151-x |
Ejemplares similares
-
DDNE: Discriminative Distance Metric Learning for Network Embedding
por: Li, Xiaoxue, et al.
Publicado: (2020) -
Metric embeddings: bilipschitz and coarse embeddings into Banach spaces
por: Ostrovskii, Mikhail I
Publicado: (2013) -
A change of perspective in network centrality
por: Sciarra, Carla, et al.
Publicado: (2018) -
Novel metric for hyperbolic phylogenetic tree embeddings
por: Matsumoto, Hirotaka, et al.
Publicado: (2021) -
The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks
por: Gu, Weiwei, et al.
Publicado: (2017)