Cargando…
Complexity control by gradient descent in deep networks
Overparametrized deep networks predict well, despite the lack of an explicit complexity control during training, such as an explicit regularization term. For exponential-type loss functions, we solve this puzzle by showing an effective regularization effect of gradient descent in terms of the normal...
Autores principales: | Poggio, Tomaso, Liao, Qianli, Banburski, Andrzej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039878/ https://www.ncbi.nlm.nih.gov/pubmed/32094327 http://dx.doi.org/10.1038/s41467-020-14663-9 |
Ejemplares similares
-
On Scalable Deep Learning and Parallelizing Gradient Descent
por: Hermans, Joeri
Publicado: (2017) -
Iterative deep neural networks based on proximal gradient descent for image restoration
por: Lv, Ting, et al.
Publicado: (2022) -
Dynamics in Deep Classifiers Trained with the Square Loss: Normalization, Low Rank, Neural Collapse, and Generalization Bounds
por: Xu, Mengjia, et al.
Publicado: (2023) -
Mutual Information Based Learning Rate Decay for Stochastic Gradient Descent Training of Deep Neural Networks
por: Vasudevan, Shrihari
Publicado: (2020) -
Correspondence between neuroevolution and gradient descent
por: Whitelam, Stephen, et al.
Publicado: (2021)