Cargando…

A Bayesian Approach to the Analysis of Local Average Treatment Effect for Missing and Non-normal Data in Causal Modeling: A Tutorial With the ALMOND Package in R

One practical challenge in observational studies and quasi-experimental designs is selection bias. The issue of selection bias becomes more concerning when data are non-normal and contain missing values. Recently, a Bayesian robust two-stage causal modeling with instrumental variables was developed...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Dingjing, Tong, Xin, Meyer, M. Joseph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040373/
https://www.ncbi.nlm.nih.gov/pubmed/32132946
http://dx.doi.org/10.3389/fpsyg.2020.00169
Descripción
Sumario:One practical challenge in observational studies and quasi-experimental designs is selection bias. The issue of selection bias becomes more concerning when data are non-normal and contain missing values. Recently, a Bayesian robust two-stage causal modeling with instrumental variables was developed and has the advantages of addressing selection bias and handle non-normal data and missing data simultaneously in one model. The method provides reliable parameter and standard error estimates when missing data and outliers exist. The modeling technique can be widely applied to empirical studies particularly in social, psychological and behavioral areas where any of the three issues (e.g., selection bias, data with outliers and missing data) is commonly seen. To implement this method, we developed an R package named ALMOND (Analysis of LATE (Local Average Treatment Effect) for Missing Or/and Nonnormal Data). Package users have the flexibility to directly apply the Bayesian robust two-stage causal models or write their own Bayesian models from scratch within the package. To facilitate the application of the Bayesian robust two-stage causal modeling technique, we provide a tutorial for the ALMOND package in this article, and illustrate the application with two examples from empirical research.