Cargando…
A Bayesian Approach to the Analysis of Local Average Treatment Effect for Missing and Non-normal Data in Causal Modeling: A Tutorial With the ALMOND Package in R
One practical challenge in observational studies and quasi-experimental designs is selection bias. The issue of selection bias becomes more concerning when data are non-normal and contain missing values. Recently, a Bayesian robust two-stage causal modeling with instrumental variables was developed...
Autores principales: | Shi, Dingjing, Tong, Xin, Meyer, M. Joseph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040373/ https://www.ncbi.nlm.nih.gov/pubmed/32132946 http://dx.doi.org/10.3389/fpsyg.2020.00169 |
Ejemplares similares
-
Corrigendum: A Bayesian Approach to the Analysis of Local Average Treatment Effect for Missing and Non-normal Data in Causal Modeling: A Tutorial With the ALMOND Package in R
por: Shi, Dingjing, et al.
Publicado: (2020) -
BayesGmed: An R-package for Bayesian causal mediation analysis
por: Yimer, Belay B., et al.
Publicado: (2023) -
Testing Separability and Independence of Perceptual Dimensions with General Recognition Theory: A Tutorial and New R Package (grtools)
por: Soto, Fabian A., et al.
Publicado: (2017) -
bayes4psy—An Open Source R Package for Bayesian Statistics in Psychology
por: Demšar, Jure, et al.
Publicado: (2020) -
Visualizing Psychological Networks: A Tutorial in R
por: Jones, Payton J., et al.
Publicado: (2018)