Cargando…
Machine learning to predict venous thrombosis in acutely ill medical patients
BACKGROUND: The identification of acutely ill patients at high risk for venous thromboembolism (VTE) may be determined clinically or by use of integer‐based scoring systems. These scores demonstrated modest performance in external data sets. OBJECTIVES: To evaluate the performance of machine learnin...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040551/ https://www.ncbi.nlm.nih.gov/pubmed/32110753 http://dx.doi.org/10.1002/rth2.12292 |