Cargando…
Machine learning to predict venous thrombosis in acutely ill medical patients
BACKGROUND: The identification of acutely ill patients at high risk for venous thromboembolism (VTE) may be determined clinically or by use of integer‐based scoring systems. These scores demonstrated modest performance in external data sets. OBJECTIVES: To evaluate the performance of machine learnin...
Autores principales: | Nafee, Tarek, Gibson, C. Michael, Travis, Ryan, Yee, Megan K., Kerneis, Mathieu, Chi, Gerald, AlKhalfan, Fahad, Hernandez, Adrian F., Hull, Russell D., Cohen, Ander T., Harrington, Robert A., Goldhaber, Samuel Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040551/ https://www.ncbi.nlm.nih.gov/pubmed/32110753 http://dx.doi.org/10.1002/rth2.12292 |
Ejemplares similares
-
Characterization of Major and Clinically Relevant Non-Major Bleeds in the APEX Trial
por: Yee, Megan K., et al.
Publicado: (2019) -
Association of D-dimer Levels with Clinical Event Rates and the Efficacy of Betrixaban versus Enoxaparin in the APEX Trial
por: Gibson, C. Michael, et al.
Publicado: (2018) -
Procoagulant factor levels and risk of venous thrombosis in the elderly
por: Wang, Huijie, et al.
Publicado: (2020) -
Model‐dependent contributions of FXII and FXI to venous thrombosis in mice
por: Grover, Steven P., et al.
Publicado: (2020) -
Venous thrombosis risk during and after medical and surgical hospitalizations: The medical inpatient thrombosis and hemostasis (MITH) study
por: Jordan Bruno, Ximena, et al.
Publicado: (2022)