Cargando…
Design of Multifunctional Titania-Based Photocatalysts by Controlled Redox Reactions
This work aims at the preparation of multifunctional titania-based photocatalysts with inherent capabilities for thermal co-activation and stabilisation of anatase polymorph, by designing the phase composition and microstructure of rutile-silicon carbide mixture. The processing involved a convention...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040659/ https://www.ncbi.nlm.nih.gov/pubmed/32046064 http://dx.doi.org/10.3390/ma13030758 |
_version_ | 1783501037418577920 |
---|---|
author | Lopes, Diogo Daniel-da-Silva, Ana Luísa Sarabando, Artur R. Arias-Serrano, Blanca I. Rodríguez-Aguado, Elena Rodríguez-Castellón, Enrique Trindade, Tito Frade, Jorge R. Kovalevsky, Andrei V. |
author_facet | Lopes, Diogo Daniel-da-Silva, Ana Luísa Sarabando, Artur R. Arias-Serrano, Blanca I. Rodríguez-Aguado, Elena Rodríguez-Castellón, Enrique Trindade, Tito Frade, Jorge R. Kovalevsky, Andrei V. |
author_sort | Lopes, Diogo |
collection | PubMed |
description | This work aims at the preparation of multifunctional titania-based photocatalysts with inherent capabilities for thermal co-activation and stabilisation of anatase polymorph, by designing the phase composition and microstructure of rutile-silicon carbide mixture. The processing involved a conventional solid state route, including partial pre-reduction of rutile by SiC in inert Ar atmosphere, followed by post-oxidation in air. The impacts of processing conditions on the phase composition and photocatalytic activity were evaluated using Taguchi planning. The XRD studies confirmed the presence of rutile/anatase mixtures in the post-oxidised samples. The results emphasise that pre-reduction and post-oxidation temperatures are critical in defining the phase composition, while post-oxidation time is relevant for the photocatalytic performance. Microstructural studies revealed the formation of core-shell particles, which can suppress the photocatalytic activity. The highest apparent reaction rate of the photodegradation of methylene blue was observed for the sample pre-reduced in Ar at 1300 °C for 5 h and then calcined in air at 400 °C for 25 h. Though its performance was ~1.6-times lower than that for the same amount of nanostructured industrial P25 photocatalyst, it was achieved in the material possessing 2–3 times lower surface area and containing ~50 mol% of SiO(2) and SiC, thus demonstrating excellent prospects for further improvements. |
format | Online Article Text |
id | pubmed-7040659 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70406592020-03-09 Design of Multifunctional Titania-Based Photocatalysts by Controlled Redox Reactions Lopes, Diogo Daniel-da-Silva, Ana Luísa Sarabando, Artur R. Arias-Serrano, Blanca I. Rodríguez-Aguado, Elena Rodríguez-Castellón, Enrique Trindade, Tito Frade, Jorge R. Kovalevsky, Andrei V. Materials (Basel) Article This work aims at the preparation of multifunctional titania-based photocatalysts with inherent capabilities for thermal co-activation and stabilisation of anatase polymorph, by designing the phase composition and microstructure of rutile-silicon carbide mixture. The processing involved a conventional solid state route, including partial pre-reduction of rutile by SiC in inert Ar atmosphere, followed by post-oxidation in air. The impacts of processing conditions on the phase composition and photocatalytic activity were evaluated using Taguchi planning. The XRD studies confirmed the presence of rutile/anatase mixtures in the post-oxidised samples. The results emphasise that pre-reduction and post-oxidation temperatures are critical in defining the phase composition, while post-oxidation time is relevant for the photocatalytic performance. Microstructural studies revealed the formation of core-shell particles, which can suppress the photocatalytic activity. The highest apparent reaction rate of the photodegradation of methylene blue was observed for the sample pre-reduced in Ar at 1300 °C for 5 h and then calcined in air at 400 °C for 25 h. Though its performance was ~1.6-times lower than that for the same amount of nanostructured industrial P25 photocatalyst, it was achieved in the material possessing 2–3 times lower surface area and containing ~50 mol% of SiO(2) and SiC, thus demonstrating excellent prospects for further improvements. MDPI 2020-02-07 /pmc/articles/PMC7040659/ /pubmed/32046064 http://dx.doi.org/10.3390/ma13030758 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lopes, Diogo Daniel-da-Silva, Ana Luísa Sarabando, Artur R. Arias-Serrano, Blanca I. Rodríguez-Aguado, Elena Rodríguez-Castellón, Enrique Trindade, Tito Frade, Jorge R. Kovalevsky, Andrei V. Design of Multifunctional Titania-Based Photocatalysts by Controlled Redox Reactions |
title | Design of Multifunctional Titania-Based Photocatalysts by Controlled Redox Reactions |
title_full | Design of Multifunctional Titania-Based Photocatalysts by Controlled Redox Reactions |
title_fullStr | Design of Multifunctional Titania-Based Photocatalysts by Controlled Redox Reactions |
title_full_unstemmed | Design of Multifunctional Titania-Based Photocatalysts by Controlled Redox Reactions |
title_short | Design of Multifunctional Titania-Based Photocatalysts by Controlled Redox Reactions |
title_sort | design of multifunctional titania-based photocatalysts by controlled redox reactions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040659/ https://www.ncbi.nlm.nih.gov/pubmed/32046064 http://dx.doi.org/10.3390/ma13030758 |
work_keys_str_mv | AT lopesdiogo designofmultifunctionaltitaniabasedphotocatalystsbycontrolledredoxreactions AT danieldasilvaanaluisa designofmultifunctionaltitaniabasedphotocatalystsbycontrolledredoxreactions AT sarabandoarturr designofmultifunctionaltitaniabasedphotocatalystsbycontrolledredoxreactions AT ariasserranoblancai designofmultifunctionaltitaniabasedphotocatalystsbycontrolledredoxreactions AT rodriguezaguadoelena designofmultifunctionaltitaniabasedphotocatalystsbycontrolledredoxreactions AT rodriguezcastellonenrique designofmultifunctionaltitaniabasedphotocatalystsbycontrolledredoxreactions AT trindadetito designofmultifunctionaltitaniabasedphotocatalystsbycontrolledredoxreactions AT fradejorger designofmultifunctionaltitaniabasedphotocatalystsbycontrolledredoxreactions AT kovalevskyandreiv designofmultifunctionaltitaniabasedphotocatalystsbycontrolledredoxreactions |