Cargando…
Flexural Behavior of a Precast Concrete Deck Connected with Headed GFRP Rebars and UHPC
Steel bent reinforcing bars (rebars) are widely used to provide adequate anchorage. Bent fiber-reinforced polymer (FRP) rebars are rarely used because of the difficulty faced during the bending process of the FRP rebars at the construction site. Additionally, the bending process may cause a signific...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040701/ https://www.ncbi.nlm.nih.gov/pubmed/32013084 http://dx.doi.org/10.3390/ma13030604 |
Sumario: | Steel bent reinforcing bars (rebars) are widely used to provide adequate anchorage. Bent fiber-reinforced polymer (FRP) rebars are rarely used because of the difficulty faced during the bending process of the FRP rebars at the construction site. Additionally, the bending process may cause a significant decrease in the structural performance of the FRP rebars. Therefore, to overcome these drawbacks, a headed glass fiber-reinforced polymer (GFRP) rebar was developed in this study. The pull-out tests of the headed GFRP rebars with diameters of 16 and 19 mm were conducted to evaluate their bond properties in various cementitious materials. Moreover, structural flexural tests were conducted on seven precast concrete decks connected with the headed GFRP rebars and various cementitious fillers to estimate the flexural behavior of the connected decks. The results demonstrate that the concrete decks connected with the headed GFRP rebar and ultra-high-performance concrete (UHPC) exhibited improved flexural performance. |
---|