Cargando…

Influence of Ti on the Tensile Properties of the High-Strength Powder Metallurgy High Entropy Alloys

The focus of this study is the evaluation of the influence of Ti concentration on the tensile properties of powder metallurgy high entropy alloys. Three Ni(1.5)Co(1.5)CrFeTi(X) alloys with X = 0.3; 0.5 and 0.7 were produced by mechanical alloying and spark plasma sintering. Additional annealing heat...

Descripción completa

Detalles Bibliográficos
Autores principales: Moravcik, Igor, Gamanov, Stepan, Moravcikova-Gouvea, Larissa, Kovacova, Zuzana, Kitzmantel, Michael, Neubauer, Erich, Dlouhy, Ivo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040714/
https://www.ncbi.nlm.nih.gov/pubmed/31991866
http://dx.doi.org/10.3390/ma13030578
Descripción
Sumario:The focus of this study is the evaluation of the influence of Ti concentration on the tensile properties of powder metallurgy high entropy alloys. Three Ni(1.5)Co(1.5)CrFeTi(X) alloys with X = 0.3; 0.5 and 0.7 were produced by mechanical alloying and spark plasma sintering. Additional annealing heat treatment at 1100 °C was utilized to obtain homogenous single-phase face centered cubic (FCC) microstructures, with minor oxide inclusions. The results show that Ti increases the strength of the alloys by increasing the average atomic size misfit i.e., solid solution strengthening. An excellent combination of mechanical properties can be obtained by the proposed method. For instance, annealed Ni(1,5)Co(1,5)CrFeTi(0.7) alloy possessed the ultimate tensile strength as high as ~1600 MPa at a tensile ductility of ~9%, despite the oxide contamination. The presented results may serve as a guideline for future alloy design of novel, inclusion-tolerant materials for sustainable metallurgy.