Cargando…
Determination of Fracture Energy of Early Age Concrete through a Uniaxial Tensile Test on an Un-Notched Specimen
Unlike the notched specimens for conventional concrete fracture tests, this paper introduces a deformation-controlled uniaxial tensile test on an un-notched specimen. The surface of the dog bone-shaped specimen is a second order parabolic curve, and the gradual change in the specimen shape does not...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040819/ https://www.ncbi.nlm.nih.gov/pubmed/31972994 http://dx.doi.org/10.3390/ma13030496 |
Sumario: | Unlike the notched specimens for conventional concrete fracture tests, this paper introduces a deformation-controlled uniaxial tensile test on an un-notched specimen. The surface of the dog bone-shaped specimen is a second order parabolic curve, and the gradual change in the specimen shape does not lead to extreme stress concentrations. Another significant feature of the tension test set-up is that it is built with three hinges, to accommodate the alignment of the specimens. The specimen preparation, test conditions, and the tension test set-up are explained in detail. The fracture energy of the concrete is determined by the obtained complete softening curves. The fracture energy is found to increase with age, going towards a horizontal asymptote as concrete hardened in a tested age range of 1 day to 90 days. Moreover, the rate of development of the fracture energy was found to be higher when compared to tensile strength and stiffness. |
---|