Cargando…

Influence of Pore Size and Fatigue Loading on NaCl Transport Properties in C-S-H Nanopores: A Molecular Dynamics Simulation

The transport properties of chloride ions in cement-based materials are one of the major deterioration mechanisms for reinforced concrete (RC) structures. This paper investigates the influence of pore size and fatigue loading on the transport properties of NaCl in C-S-H nanopores using molecular dyn...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Qingyu, Xu, Yidong, Fang, Jianke, Song, Yufeng, Wang, Yao, You, Weiguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040904/
https://www.ncbi.nlm.nih.gov/pubmed/32033156
http://dx.doi.org/10.3390/ma13030700
_version_ 1783501087165120512
author Cao, Qingyu
Xu, Yidong
Fang, Jianke
Song, Yufeng
Wang, Yao
You, Weiguo
author_facet Cao, Qingyu
Xu, Yidong
Fang, Jianke
Song, Yufeng
Wang, Yao
You, Weiguo
author_sort Cao, Qingyu
collection PubMed
description The transport properties of chloride ions in cement-based materials are one of the major deterioration mechanisms for reinforced concrete (RC) structures. This paper investigates the influence of pore size and fatigue loading on the transport properties of NaCl in C-S-H nanopores using molecular dynamics (MD) simulations. Molecular models of C-S-H, NaCl solution, and C-S-H nanopores with different pore diameters are established on a microscopic scale. The distribution of the chloride ion diffusion rate and the diffusion coefficient of each particle are obtained by statistically calculating the variation of atomic displacement with time. The results indicate that the chloride ion diffusion rate perpendicular to C-S-H nanopores under fatigue loading is 4 times faster than that without fatigue loading. Moreover, the diffusion coefficient of water molecules and chloride ions in C-S-H nanopores increases under fatigue loading compared with those without fatigue loading. The diffusion coefficient of water molecules in C-S-H nanopores with a pore size of 3 nm obtained from the MD simulation is 1.794 × 10(−9) m(2)/s, which is slightly lower than that obtained from the experiment.
format Online
Article
Text
id pubmed-7040904
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70409042020-03-09 Influence of Pore Size and Fatigue Loading on NaCl Transport Properties in C-S-H Nanopores: A Molecular Dynamics Simulation Cao, Qingyu Xu, Yidong Fang, Jianke Song, Yufeng Wang, Yao You, Weiguo Materials (Basel) Article The transport properties of chloride ions in cement-based materials are one of the major deterioration mechanisms for reinforced concrete (RC) structures. This paper investigates the influence of pore size and fatigue loading on the transport properties of NaCl in C-S-H nanopores using molecular dynamics (MD) simulations. Molecular models of C-S-H, NaCl solution, and C-S-H nanopores with different pore diameters are established on a microscopic scale. The distribution of the chloride ion diffusion rate and the diffusion coefficient of each particle are obtained by statistically calculating the variation of atomic displacement with time. The results indicate that the chloride ion diffusion rate perpendicular to C-S-H nanopores under fatigue loading is 4 times faster than that without fatigue loading. Moreover, the diffusion coefficient of water molecules and chloride ions in C-S-H nanopores increases under fatigue loading compared with those without fatigue loading. The diffusion coefficient of water molecules in C-S-H nanopores with a pore size of 3 nm obtained from the MD simulation is 1.794 × 10(−9) m(2)/s, which is slightly lower than that obtained from the experiment. MDPI 2020-02-04 /pmc/articles/PMC7040904/ /pubmed/32033156 http://dx.doi.org/10.3390/ma13030700 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Cao, Qingyu
Xu, Yidong
Fang, Jianke
Song, Yufeng
Wang, Yao
You, Weiguo
Influence of Pore Size and Fatigue Loading on NaCl Transport Properties in C-S-H Nanopores: A Molecular Dynamics Simulation
title Influence of Pore Size and Fatigue Loading on NaCl Transport Properties in C-S-H Nanopores: A Molecular Dynamics Simulation
title_full Influence of Pore Size and Fatigue Loading on NaCl Transport Properties in C-S-H Nanopores: A Molecular Dynamics Simulation
title_fullStr Influence of Pore Size and Fatigue Loading on NaCl Transport Properties in C-S-H Nanopores: A Molecular Dynamics Simulation
title_full_unstemmed Influence of Pore Size and Fatigue Loading on NaCl Transport Properties in C-S-H Nanopores: A Molecular Dynamics Simulation
title_short Influence of Pore Size and Fatigue Loading on NaCl Transport Properties in C-S-H Nanopores: A Molecular Dynamics Simulation
title_sort influence of pore size and fatigue loading on nacl transport properties in c-s-h nanopores: a molecular dynamics simulation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040904/
https://www.ncbi.nlm.nih.gov/pubmed/32033156
http://dx.doi.org/10.3390/ma13030700
work_keys_str_mv AT caoqingyu influenceofporesizeandfatigueloadingonnacltransportpropertiesincshnanoporesamoleculardynamicssimulation
AT xuyidong influenceofporesizeandfatigueloadingonnacltransportpropertiesincshnanoporesamoleculardynamicssimulation
AT fangjianke influenceofporesizeandfatigueloadingonnacltransportpropertiesincshnanoporesamoleculardynamicssimulation
AT songyufeng influenceofporesizeandfatigueloadingonnacltransportpropertiesincshnanoporesamoleculardynamicssimulation
AT wangyao influenceofporesizeandfatigueloadingonnacltransportpropertiesincshnanoporesamoleculardynamicssimulation
AT youweiguo influenceofporesizeandfatigueloadingonnacltransportpropertiesincshnanoporesamoleculardynamicssimulation