Cargando…
Realizing a Novel Friction Stir Processing-Enabled FWTPET Process for Strength Enhancement Using Firefly and PSO Methods
The friction welding of tube to tube plate using an external tool (FWTPET) is widely deployed in several industrial applications, such as aerospace, automotive, and power plants. Moreover, for achieving a better tensile strength and hardness in the weld zone, the friction stir processing (FSP) techn...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040924/ https://www.ncbi.nlm.nih.gov/pubmed/32033460 http://dx.doi.org/10.3390/ma13030728 |
_version_ | 1783501091761029120 |
---|---|
author | S, Senthil Kumaran Kaliappan, Jayakumar Srinivasan, Kathiravan Hu, Yuh-Chung Padmanaban, Sanjeevikumar N, Srinivasan |
author_facet | S, Senthil Kumaran Kaliappan, Jayakumar Srinivasan, Kathiravan Hu, Yuh-Chung Padmanaban, Sanjeevikumar N, Srinivasan |
author_sort | S, Senthil Kumaran |
collection | PubMed |
description | The friction welding of tube to tube plate using an external tool (FWTPET) is widely deployed in several industrial applications, such as aerospace, automotive, and power plants. Moreover, for achieving a better tensile strength and hardness in the weld zone, the friction stir processing (FSP) technique was incorporated into the FWTPET process for joining aluminum alloys (AA6063 tube, AA6061 tube plate). Furthermore, it has to be noted that FWTPET was applied for joining the AA6063 tube to the AA6061 tube plate, and FSP was deployed for reinforcing the weld zone with carbon nanotube (CNT) and silicon nitride (Si(3)N(4)) particles, thereby attaining the desirable mechanical properties. Subsequently, the Taguchi L(25) orthogonal array was used for identifying the most influential input and output FWTPET + FSP process parameters. Furthermore, particle swarm optimization (PSO) and the firefly algorithm (FFA) were deployed for determining the optimized input and output FWTPET + FSP process parameters. The input process parameters include CNT, Si(3)N(4,) rotational tool speed, and depth. Furthermore, the tensile strength of the welded joint was considered as the output process parameter. The process parameters predicted by PSO and FFA were compared with the experimental values. It was witnessed that deviation between the predicted and experimental values was minimal. Moreover, it was found that FFA provided a superior tensile strength prediction than PSO. |
format | Online Article Text |
id | pubmed-7040924 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70409242020-03-09 Realizing a Novel Friction Stir Processing-Enabled FWTPET Process for Strength Enhancement Using Firefly and PSO Methods S, Senthil Kumaran Kaliappan, Jayakumar Srinivasan, Kathiravan Hu, Yuh-Chung Padmanaban, Sanjeevikumar N, Srinivasan Materials (Basel) Article The friction welding of tube to tube plate using an external tool (FWTPET) is widely deployed in several industrial applications, such as aerospace, automotive, and power plants. Moreover, for achieving a better tensile strength and hardness in the weld zone, the friction stir processing (FSP) technique was incorporated into the FWTPET process for joining aluminum alloys (AA6063 tube, AA6061 tube plate). Furthermore, it has to be noted that FWTPET was applied for joining the AA6063 tube to the AA6061 tube plate, and FSP was deployed for reinforcing the weld zone with carbon nanotube (CNT) and silicon nitride (Si(3)N(4)) particles, thereby attaining the desirable mechanical properties. Subsequently, the Taguchi L(25) orthogonal array was used for identifying the most influential input and output FWTPET + FSP process parameters. Furthermore, particle swarm optimization (PSO) and the firefly algorithm (FFA) were deployed for determining the optimized input and output FWTPET + FSP process parameters. The input process parameters include CNT, Si(3)N(4,) rotational tool speed, and depth. Furthermore, the tensile strength of the welded joint was considered as the output process parameter. The process parameters predicted by PSO and FFA were compared with the experimental values. It was witnessed that deviation between the predicted and experimental values was minimal. Moreover, it was found that FFA provided a superior tensile strength prediction than PSO. MDPI 2020-02-05 /pmc/articles/PMC7040924/ /pubmed/32033460 http://dx.doi.org/10.3390/ma13030728 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article S, Senthil Kumaran Kaliappan, Jayakumar Srinivasan, Kathiravan Hu, Yuh-Chung Padmanaban, Sanjeevikumar N, Srinivasan Realizing a Novel Friction Stir Processing-Enabled FWTPET Process for Strength Enhancement Using Firefly and PSO Methods |
title | Realizing a Novel Friction Stir Processing-Enabled FWTPET Process for Strength Enhancement Using Firefly and PSO Methods |
title_full | Realizing a Novel Friction Stir Processing-Enabled FWTPET Process for Strength Enhancement Using Firefly and PSO Methods |
title_fullStr | Realizing a Novel Friction Stir Processing-Enabled FWTPET Process for Strength Enhancement Using Firefly and PSO Methods |
title_full_unstemmed | Realizing a Novel Friction Stir Processing-Enabled FWTPET Process for Strength Enhancement Using Firefly and PSO Methods |
title_short | Realizing a Novel Friction Stir Processing-Enabled FWTPET Process for Strength Enhancement Using Firefly and PSO Methods |
title_sort | realizing a novel friction stir processing-enabled fwtpet process for strength enhancement using firefly and pso methods |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040924/ https://www.ncbi.nlm.nih.gov/pubmed/32033460 http://dx.doi.org/10.3390/ma13030728 |
work_keys_str_mv | AT ssenthilkumaran realizinganovelfrictionstirprocessingenabledfwtpetprocessforstrengthenhancementusingfireflyandpsomethods AT kaliappanjayakumar realizinganovelfrictionstirprocessingenabledfwtpetprocessforstrengthenhancementusingfireflyandpsomethods AT srinivasankathiravan realizinganovelfrictionstirprocessingenabledfwtpetprocessforstrengthenhancementusingfireflyandpsomethods AT huyuhchung realizinganovelfrictionstirprocessingenabledfwtpetprocessforstrengthenhancementusingfireflyandpsomethods AT padmanabansanjeevikumar realizinganovelfrictionstirprocessingenabledfwtpetprocessforstrengthenhancementusingfireflyandpsomethods AT nsrinivasan realizinganovelfrictionstirprocessingenabledfwtpetprocessforstrengthenhancementusingfireflyandpsomethods |