Cargando…
proMAD: semiquantitative densitometric measurement of protein microarrays
BACKGROUND: Protein microarrays are a versatile and widely used tool for analyzing complex protein mixtures. Membrane arrays utilize antibodies which are captured on a membrane to specifically immobilize several proteins of interest at once. Using detection antibodies, the bound protein-antibody-com...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041094/ https://www.ncbi.nlm.nih.gov/pubmed/32093608 http://dx.doi.org/10.1186/s12859-020-3402-4 |
_version_ | 1783501103540731904 |
---|---|
author | Jaeschke, Anna Eckert, Hagen Bray, Laura J. |
author_facet | Jaeschke, Anna Eckert, Hagen Bray, Laura J. |
author_sort | Jaeschke, Anna |
collection | PubMed |
description | BACKGROUND: Protein microarrays are a versatile and widely used tool for analyzing complex protein mixtures. Membrane arrays utilize antibodies which are captured on a membrane to specifically immobilize several proteins of interest at once. Using detection antibodies, the bound protein-antibody-complex is converted into visual signals, which can be quantified using densitometry. The reliability of such densitometric assessments depends on a variety of factors, not only sample preparation and the choice of acquisition device but also the selected analysis software and the algorithms used for readout and processing data. Currently available software packages use a single image of a membrane at an optimal exposure time selected for that specific experimental framework. This selection is based on a user’s best guess and is subject to inter-user variability or the acquisition device algorithm. With modern image acquisition systems proving the capacity to collect signal development over time, this information can be used to improve densitometric measurements. Here we introduce proMAD, a toolkit for protein microarray analysis providing a novel systemic approach for the quantification of membrane arrays based on the kinetics of the analytical reaction. RESULTS: Briefly, our toolkit ensures an exact membrane alignment, utilizing basic computer vision techniques. It also provides a stable method to estimate the background light level. Finally, we model the light production over time, utilizing the knowledge about the reaction kinetics of the underlying horseradish peroxidase-based signal detection method. CONCLUSION: proMAD incorporates the reaction kinetics of the enzyme to model the signal development over time for each membrane creating an individual, self-referencing concept. Variations of membranes within a given experimental set up can be accounted for, allowing for a better comparison of such. While the open-source library can be implemented in existing workflows and used for highly user-tailored analytic setups, the web application, on the other hand, provides easy platform-independent access to the core algorithm to a wide range of researchers. proMAD’s inherent flexibility has the potential to cover a wide range of use-cases and enables the automation of data analytic tasks. |
format | Online Article Text |
id | pubmed-7041094 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-70410942020-03-02 proMAD: semiquantitative densitometric measurement of protein microarrays Jaeschke, Anna Eckert, Hagen Bray, Laura J. BMC Bioinformatics Software BACKGROUND: Protein microarrays are a versatile and widely used tool for analyzing complex protein mixtures. Membrane arrays utilize antibodies which are captured on a membrane to specifically immobilize several proteins of interest at once. Using detection antibodies, the bound protein-antibody-complex is converted into visual signals, which can be quantified using densitometry. The reliability of such densitometric assessments depends on a variety of factors, not only sample preparation and the choice of acquisition device but also the selected analysis software and the algorithms used for readout and processing data. Currently available software packages use a single image of a membrane at an optimal exposure time selected for that specific experimental framework. This selection is based on a user’s best guess and is subject to inter-user variability or the acquisition device algorithm. With modern image acquisition systems proving the capacity to collect signal development over time, this information can be used to improve densitometric measurements. Here we introduce proMAD, a toolkit for protein microarray analysis providing a novel systemic approach for the quantification of membrane arrays based on the kinetics of the analytical reaction. RESULTS: Briefly, our toolkit ensures an exact membrane alignment, utilizing basic computer vision techniques. It also provides a stable method to estimate the background light level. Finally, we model the light production over time, utilizing the knowledge about the reaction kinetics of the underlying horseradish peroxidase-based signal detection method. CONCLUSION: proMAD incorporates the reaction kinetics of the enzyme to model the signal development over time for each membrane creating an individual, self-referencing concept. Variations of membranes within a given experimental set up can be accounted for, allowing for a better comparison of such. While the open-source library can be implemented in existing workflows and used for highly user-tailored analytic setups, the web application, on the other hand, provides easy platform-independent access to the core algorithm to a wide range of researchers. proMAD’s inherent flexibility has the potential to cover a wide range of use-cases and enables the automation of data analytic tasks. BioMed Central 2020-02-24 /pmc/articles/PMC7041094/ /pubmed/32093608 http://dx.doi.org/10.1186/s12859-020-3402-4 Text en © The Author(s) 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Software Jaeschke, Anna Eckert, Hagen Bray, Laura J. proMAD: semiquantitative densitometric measurement of protein microarrays |
title | proMAD: semiquantitative densitometric measurement of protein microarrays |
title_full | proMAD: semiquantitative densitometric measurement of protein microarrays |
title_fullStr | proMAD: semiquantitative densitometric measurement of protein microarrays |
title_full_unstemmed | proMAD: semiquantitative densitometric measurement of protein microarrays |
title_short | proMAD: semiquantitative densitometric measurement of protein microarrays |
title_sort | promad: semiquantitative densitometric measurement of protein microarrays |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041094/ https://www.ncbi.nlm.nih.gov/pubmed/32093608 http://dx.doi.org/10.1186/s12859-020-3402-4 |
work_keys_str_mv | AT jaeschkeanna promadsemiquantitativedensitometricmeasurementofproteinmicroarrays AT eckerthagen promadsemiquantitativedensitometricmeasurementofproteinmicroarrays AT braylauraj promadsemiquantitativedensitometricmeasurementofproteinmicroarrays |