Cargando…
PYLFIRE: Python implementation of likelihood-free inference by ratio estimation
Likelihood-free inference for simulator-based models is an emerging methodological branch of statistics which has attracted considerable attention in applications across diverse fields such as population genetics, astronomy and economics. Recently, the power of statistical classifiers has been harne...
Autores principales: | Kokko, Jan, Remes, Ulpu, Thomas, Owen, Pesonen, Henri, Corander, Jukka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041362/ https://www.ncbi.nlm.nih.gov/pubmed/32133422 http://dx.doi.org/10.12688/wellcomeopenres.15583.1 |
Ejemplares similares
-
RhierBAPS: An R implementation of the population clustering algorithm hierBAPS
por: Tonkin-Hill, Gerry, et al.
Publicado: (2018) -
InferAMP, a python web app for copy number inference from discrete gene-level amplification signals noted in clinical tumor profiling reports
por: Kenny, Paraic A.
Publicado: (2019) -
Likelihood-free inference via classification
por: Gutmann, Michael U., et al.
Publicado: (2017) -
DREAMTools: a Python package for scoring collaborative challenges
por: Cokelaer, Thomas, et al.
Publicado: (2016) -
pyGeno: A Python package for precision medicine and proteogenomics
por: Daouda, Tariq, et al.
Publicado: (2016)