Cargando…
Adaptive Tuning Curve Widths Improve Sample Efficient Learning
Natural brains perform miraculously well in learning new tasks from a small number of samples, whereas sample efficient learning is still a major open problem in the field of machine learning. Here, we raise the question, how the neural coding scheme affects sample efficiency, and make first progres...
Autores principales: | Meier, Florian, Dang-Nhu, Raphaël, Steger, Angelika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041413/ https://www.ncbi.nlm.nih.gov/pubmed/32132915 http://dx.doi.org/10.3389/fncom.2020.00012 |
Ejemplares similares
-
Presynaptic stochasticity improves energy efficiency and helps alleviate the stability-plasticity dilemma
por: Schug, Simon, et al.
Publicado: (2021) -
Adaptation Modulates Spike-Phase Coupling Tuning Curve in the Rat Primary Auditory Cortex
por: Zarei, Mohammad, et al.
Publicado: (2020) -
Optimum neural tuning curves for information efficiency with rate coding and finite-time window
por: Han, Fang, et al.
Publicado: (2015) -
Determine Neuronal Tuning Curves by Exploring Optimum Firing Rate Distribution for Information Efficiency
por: Han, Fang, et al.
Publicado: (2017) -
Are single-peaked tuning curves tuned for speed rather than accuracy?
por: Lenninger, Movitz, et al.
Publicado: (2023)