Cargando…

Functional lncRNA-miRNA-mRNA networks in rabbit carotid atherosclerosis

Atherosclerosis is one of the most common clinical cardiovascular disorders. Accumulating evidence indicates that lncRNAs exert critical functions in atherosclerosis; however, their functional roles and regulatory mechanisms remain unclear. In this study, we induced atherosclerotic plaques in three...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yingnan, Zhang, Feng, Lu, Rui, Feng, Yanan, Li, Xiaoying, Zhang, Shuang, Hou, Wenying, Tian, Jiawei, Kong, Xianchao, Sun, Litao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041763/
https://www.ncbi.nlm.nih.gov/pubmed/32045883
http://dx.doi.org/10.18632/aging.102778
Descripción
Sumario:Atherosclerosis is one of the most common clinical cardiovascular disorders. Accumulating evidence indicates that lncRNAs exert critical functions in atherosclerosis; however, their functional roles and regulatory mechanisms remain unclear. In this study, we induced atherosclerotic plaques in three rabbit carotid arteries through an atherogenic diet and balloon injury; three age-matched rabbits were fed normal chow and served as controls. We thoroughly investigated the RNA (mRNA, lncRNA and miRNA) expression profiles in atherosclerotic rabbit carotid models with deep RNA sequencing. We identified several significantly differentially expressed RNAs. The corresponding lncRNA-miRNA-mRNA network was constructed, and the significantly dysregulated network was selected. Furthermore, Gene Ontology and  Kyoto Encyclopedia of Genes and Genomes analyses indicated that the mRNAs in the network were involved in leukocyte activation, cell proliferation, cell adhesion molecules and cytokine-cytokine receptor interaction. After rigorous screening, we obtained a differentially expressed lncRNA-miRNA-mRNA interaction network associated with atherosclerosis. In the network, XLOC_054118 and XLOC_030217 upregulate the CHI3L1, SOAT, CTSB and CAPG genes by competitively binding to the miRNA ocu-miR-96-5p. XLOC_062719 and XLOC_063297 upregulate CTSS, CTSB and EDNRA genes by competitively binding to the miRNA ocu-miR-185-5p.