Cargando…
Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing
BACKGROUND: Data sharing accelerates scientific progress but sharing individual-level data while preserving patient privacy presents a barrier. METHODS AND RESULTS: Using pairs of deep neural networks, we generated simulated, synthetic participants that closely resemble participants of the SPRINT tr...
Autores principales: | Beaulieu-Jones, Brett K., Wu, Zhiwei Steven, Williams, Chris, Lee, Ran, Bhavnani, Sanjeev P., Byrd, James Brian, Greene, Casey S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041894/ https://www.ncbi.nlm.nih.gov/pubmed/31284738 http://dx.doi.org/10.1161/CIRCOUTCOMES.118.005122 |
Ejemplares similares
-
A privacy-preserving solution for compressed storage and selective retrieval of genomic data
por: Huang, Zhicong, et al.
Publicado: (2016) -
SOPHIE: Generative Neural Networks Separate Common and Specific Transcriptional Responses
por: Lee, Alexandra J., et al.
Publicado: (2022) -
Privacy-preserving logistic regression with secret sharing
por: Ghavamipour, Ali Reza, et al.
Publicado: (2022) -
Privacy-preserving data sharing via probabilistic modeling
por: Jälkö, Joonas, et al.
Publicado: (2021) -
Privacy-Preserving Image Template Sharing Using Contrastive Learning
por: Rezaeifar, Shideh, et al.
Publicado: (2022)