Cargando…
Applying Machine Learning to Ultrafast Shape Recognition in Ligand-Based Virtual Screening
Ultrafast Shape Recognition (USR), along with its derivatives, are Ligand-Based Virtual Screening (LBVS) methods that condense 3-dimensional information about molecular shape, as well as other properties, into a small set of numeric descriptors. These can be used to efficiently compute a measure of...
Autores principales: | Bonanno, Etienne, Ebejer, Jean-Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042174/ https://www.ncbi.nlm.nih.gov/pubmed/32140104 http://dx.doi.org/10.3389/fphar.2019.01675 |
Ejemplares similares
-
USR-VS: a web server for large-scale prospective virtual screening using ultrafast shape recognition techniques
por: Li, Hongjian, et al.
Publicado: (2016) -
Artificial Intelligence and Machine Learning Applied at the Point of Care
por: Angehrn, Zuzanna, et al.
Publicado: (2020) -
Evaluation of different machine learning methods for ligand-based virtual screening
por: Kurczab, R, et al.
Publicado: (2011) -
A novel hybrid ultrafast shape descriptor method for use in virtual screening
por: Cannon, Edward O, et al.
Publicado: (2008) -
Learning the Edit Costs of Graph Edit Distance Applied to Ligand-Based Virtual Screening
por: Garcia-Hernandez, Carlos, et al.
Publicado: (2020)