Cargando…
A new strategy for directly calculating the minimum eigenvector of matrices without diagonalization
The diagonalization of matrices may be the top priority in the application of modern physics. In this paper, we numerically demonstrate that, for real symmetric random matrices with non-positive off-diagonal elements, a universal scaling relationship between the eigenvector and matrix elements exist...
Autores principales: | Pan, Wei, Wang, Jing, Sun, Deyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042245/ https://www.ncbi.nlm.nih.gov/pubmed/32098987 http://dx.doi.org/10.1038/s41598-020-60103-5 |
Ejemplares similares
-
Minimum Eigenvector Collaborative Representation Discriminant Projection for Feature Extraction
por: Hu, Haoshuang, et al.
Publicado: (2020) -
Computing eigenvectors of block tridiagonal matrices based on twisted block factorizations
por: König, Gerhard, et al.
Publicado: (2012) -
Controlled precision QUBO-based algorithm to compute eigenvectors of symmetric matrices
por: Krakoff, Benjamin, et al.
Publicado: (2022) -
On the diagonalization of principal submatrices of positive-definitive symmetric matrices, pt 1; properties of the diagonal elements
por: Daneels, A
Publicado: (1972) -
The design and use of algorithms for permuting large entries to the diagonal of sparse matrices
por: Duff, I S, et al.
Publicado: (1997)