Cargando…
Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance
Laser welding is a key technology for many industrial applications. However, its online quality monitoring is an open issue due to the highly complex nature of the process. This work aims at enriching existing approaches in this field. We propose a method for real-time detection of process instabili...
Autores principales: | Shevchik, Sergey, Le-Quang, Tri, Meylan, Bastian, Farahani, Farzad Vakili, Olbinado, Margie P., Rack, Alexander, Masinelli, Giulio, Leinenbach, Christian, Wasmer, Kilian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042273/ https://www.ncbi.nlm.nih.gov/pubmed/32098995 http://dx.doi.org/10.1038/s41598-020-60294-x |
Ejemplares similares
-
Author Correction: Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance
por: Shevchik, Sergey, et al.
Publicado: (2020) -
Sensitivity Analysis of Acoustic Emission Detection Using Fiber Bragg Gratings with Different Optical Fiber Diameters
por: Violakis, Georgios, et al.
Publicado: (2020) -
Optimization of Process Parameters for the Laser Polishing of Hardened Tool Steel
por: Meylan, Bastian, et al.
Publicado: (2022) -
Characterization of Ablated Bone and Muscle for Long-Pulsed Laser Ablation in Dry and Wet Conditions
por: Nguendon Kenhagho, Hervé, et al.
Publicado: (2019) -
Towards a practical implementation of X-ray ghost imaging with synchrotron light
por: Pelliccia, Daniele, et al.
Publicado: (2018)