Cargando…

Isolation, purification and characterization of naturally derived Crocetin beta-d-glucosyl ester from Crocus sativus L. against breast cancer and its binding chemistry with ER-alpha/HDAC2

Saffron plant (Crocus sativus L.) is being used as a source of saffron spice and medicine to cure or prevent different types of diseases including cancers. We report the isolation, characterization of bioactive small molecule ([crocetin (β-d-glucosyl) ester] from the leaf biowastes of saffron plant...

Descripción completa

Detalles Bibliográficos
Autores principales: Mir, Mudasir A., Ganai, Shabir Ahmad, Mansoor, Sheikh, Jan, Sumira, Mani, P., Masoodi, Khalid Z., Amin, Henna, Rehman, Muneeb U., Ahmad, Parvaiz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042633/
https://www.ncbi.nlm.nih.gov/pubmed/32127777
http://dx.doi.org/10.1016/j.sjbs.2020.01.018
Descripción
Sumario:Saffron plant (Crocus sativus L.) is being used as a source of saffron spice and medicine to cure or prevent different types of diseases including cancers. We report the isolation, characterization of bioactive small molecule ([crocetin (β-d-glucosyl) ester] from the leaf biowastes of saffron plant of Kashmir, India. MTTC assay and Bio-autography aided approach were used to assess anti-oxidant activity and anti-cancer properties of crocin (s) against DPPH free radical and breast cancer cell line respectively. Crocetin beta-d-glucosyl ester restrained proliferation of human breast adeno-carcinoma cell model (MCF-7) without significantly affecting normal cell line (L-6). Further studies involving molecular mechanics generalized born surface area and molecular docking showed that crocetin beta-d-glucosyl ester exhibits strong affinity for estrogen receptor alpha and histone deacetylase 2 (crucial receptors involved in breast cancer signalling) as evidenced by the negative docking score and binding free energy (BFE) values. Therefore, crocetin beta-d-glucosyl ester from Crocus sativus biowastes showed antiproliferative effect possibly by inhibiting estrogen receptor alpha and HDAC2 mediated signalling cascade.